NumPy实战:Chapter-1(初识NumPy)

2024-06-21 01:32
文章标签 实战 初识 numpy chapter

本文主要是介绍NumPy实战:Chapter-1(初识NumPy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 为什么学习NumPy
  • 使用Ipython
      • 打开IPython的shell界面
      • 保存会话
      • 执行系统的shell命令
      • 显示历史记录
  • 使用notebook
      • 运行notebook
      • 初试notebook
      • 导出基于Web的notebook
      • 导入基于Web的notebook
  • SciPy和PIL
    • 安装软件
      • 安装SciPy
        • 检查安装是否完成
      • 安装PIL
        • 检查安装是否完成
  • SciPy和PIL的实例
    • 调整图像大小
      • 加载图像face到数组中
      • 检查数组的形状
      • 调整数组的大小
      • 绘制数组对应的图像
      • 本小节完整代码
    • 创建视图和副本
      • 下面我们将创建一张图片的副本同时创建一张图片的视图
      • 使用flat迭代器把视图中所有的值清零
      • 本小节所有的代码
    • 翻转图像
      • 绘制翻转后的图像
      • 绘制图像的一部分
      • 对图像应用遮罩的效果
      • 本小节所有代码
    • 高级索引
      • 把第一条对角线位置上的数值置为白点
    • 两条对角线的值都置为白点
      • 本小节所有代码
    • 布尔型索引
      • 在图像中添加点状的对角线
      • 把指定范围内的数值置255带阻功能
      • 本小节所有代码
  • 参考资料

为什么学习NumPy

最近在学习机器学习的时候,发现许多地方都需要操作数组,尤其是在做数据预处理的时候,需要对数据去均值、对图像做增强(分割、水平翻转等)。这都需要我们了解python中数组数据处理,而NumPy是python中一个有名的科学计算库,所以我准备系统的学习一下NumPy。

当然我们并不只是学习NumPy这一个软件,Python科学计算生态系统中的其他软件,如数值计算库SciPy、绘图库Matplotlib和各种scikit项目(机器学习中大量用的这个)等。

学习的过程中,需要安装多种软件库,这里我建议直接安装一个Python的发行版,我安装的就是Anaconda(TensorFlow安装也需要),省了很多事。



使用Ipython

IPython是一个工具集合,因为它的Shell而为人熟知,在Shell中,我们可以交互式的学习,想必用惯了matlab或者IDLE,会很习惯使用IPython。现在IPython中基于Web的notebook的一个非常好用的工具,且集成了许多其他功能。IPython中包括各种组件,其中两个主要的组件是:

  • 基于终端方式和基于Qt的交互式Python shell
  • 支持多媒体和绘图功能的基于web的notebook

打开IPython的shell界面

一般使用IPython做科学计算时,我们会增加pylab选项开关,增加pylab选项可以自动引入SciPy/NumPy和Matplotlib软件包,这样可以方便我们调用。
使用命令

 ipython -pylab

这里写图片描述


保存会话

在使用IPyhon的时候,有时我们可能需要回溯做过的操作,这需要我们开始记录我们的操作,在IPython中我们可以保存会话以供将来查看,这需要使用以下命令:

    %logstart   #开始记录文件...  # 我们的操作实验%logoff     #停止记录文件

这里写图片描述


执行系统的shell命令

在调试程序时,我们可以需要使用默认设置的IPython环境中执行系统shell命令时,;;例如获取当前系统时间(可以使用time模块,很麻烦),这时我们可以在交互语句中使用!shell指令,即在系统命令前加!前缀,例如:

date  #使用shell命令 查看当前时间# 也可以将shell命令执行后的结果保存thedate = !dateprint thedate[0]

这里写图片描述


显示历史记录

上面我们讲了如果记录操作记录,记录是为了后续的查看使用,这里我们可以使用%hist命令显示操作的历史记录:

%hist 

使用%hist -g选项,可以实现对历史记录的搜索

%hist -g xxxx  # 对历史记录搜索xxxx

这里写图片描述



使用notebook

IPython有一个特性-基于Web的notebook,它可以通过Web方式提供notebook界面,我们可以启动一个notebook服务器,获得一个基于Web的IPython运行环境,notebook除了具备常规IPython环境中的大多数特性,还包括以下特性。

  • 显示图像和嵌入式图标
  • 在文本单元格中使用HTML和Markdown
  • notebook的导入和导出

运行notebook

使用如下命令,启动notebook:

ipython notebook

基于web的notebook界面如下(浏览器下):

这里写图片描述


初试notebook

1. 创建一个notebook对话
在notebook开始页面上,我们可以选中New|Python2 创建一个新的基于Web的Python对话框:

这里写图片描述

2. 导入pylab模型
上面我们讲到了,在使用IPython做科学计算时,我们会选用pylab选项,当然在notebook中我们也可以选用pylab选项,使用命令如下:

%pylab  # 输入完%pylab后,使用shift+enter执行

操作结果如下:

这里写图片描述

3. 创建一个数组并使用plot绘制
在notebook中键入程序,并使用shift+enter执行程序:

    a = range(10)plot(sqrt(a))  #绘制图片

可以看到,和终端对话框的界面类似,比终端对话框好看的多~!

这里写图片描述


导出基于Web的notebook

notebook下也可以记录操作指令,用于查看。操作过程是:在File菜单下,可以将notebook工程保存成html或者pdf供别人查看;或者保存成Python或.ipynb(json格式)。

这里写图片描述


导入基于Web的notebook

相对于记录操作指令,也就会有查看指令,一般的pdf或者html直接打开就可以。还有一些其他文件格式,例如ipynb文件,我们可以使用Home下的Upload将需要导入的文件导入,在目录下打开即可.

这里写图片描述



SciPy和PIL

上一节我们简单的介绍了NumPy,NumPy以高效率的数组著称,这主要归功于索引的易用性。我们将以图像处理为例展示高级的索引技巧。在深入研究索引之前,我们要先做好准备工作–安装必备的软件SciPy和PIL.

  • SciPy:用于科学计算
  • PIL:Python Imaging Libraryd的缩写,因为实例中涉及图像处理,为此,我们需要用到Python图像库PIL

安装软件

安装软件

安装SciPy

使用python自带工具pip安装

pip install scipy

ubuntu下使用apt安装

sudo apt-get install python-scipy
检查安装是否完成

在python环境中尝试导入scipy包,使用versionfile等BIL方法查看scipy包的信息.下图是在notebook中导入scipy包,并查看scipy包信息.

这里写图片描述

安装PIL

使用Ubuntu下的apt工具安装:

sudo apt-get install python-imaging

使用pip工具安装:

pip install pillow
# Pillow是PIL的一个派生分支,但如今已经发展成为比PIL本身更具活力的图像处理库,且原本的PIL只支持到2.7
检查安装是否完成

在python环境中尝试导入PIL包,使用versionfile等BIL方法查看PIL包的信息.下图是在notebook中导入PIL包,并查看PIL包信息.

这里写图片描述



SciPy和PIL的实例

调整图像大小

调整图像大小

1. 加载图像face到数组中

        import scipy.misc as miscface = misc.face()

这里写图片描述

2. 检查数组的形状

face.shape

这里写图片描述

可以看到图片的大小是3通道768*1024;

3. 调整数组的大小

我们使用numpy.repeat函数来调整大小,repeat是将数组的元素重复以达到调整数组大小的目的(重复倍数需整数倍)

        resized = face.repeat(1,axis=0).repeat(3,axis=1)# 第一位维度元素不变,第二维度元素重复3遍

这里写图片描述


函数说明:numpy.repeat(a, repeats, axis=None)

项目含义
参数
aint or array of ints.
输入array
repeatsint 或ints
每个元素的重复次数。重复以适应给定轴的shape
axisint, optional
制定要重复的数轴(取值不能超过输入的shape)
返回值修改后的array

Examples

>>> np.repeat(3, 4)
array([3, 3, 3, 3])
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],[3, 4],[3, 4]])

4. 绘制数组对应的图像

matplotlib中的subplot函数用来创建子图。这个函数以一个3位的整数作为参数,最高位代表行数,第二数字代表列数,最后一个数字代表子图的位置索引(从1开始编号)。imshow用来显示图像,show用来显示结果.

    matplotlib.pyplot.subplot(121)matplotlib.pyplot.imshow(face)matplotlib.pyplot.subplot(122)matplotlib.pyplot.imshow(resized)

这里写图片描述


本小节完整代码

    import scipy.misc as miscimport matplotlib.pyplot as plotface = misc.face()print(face.shape)resized = face.repeat(1,axis=0).repeat(3,axis=1)resized.shapeplot.subplot(121)matplotlib.pyplot.imshow(face)plot.subplot(122)plot.imshow(resized)

创建视图和副本

创建视图和副本

我们在与一个共享的数组视图打交道时,要注意视图不是只读的,在应用中,一个切片(slice)对应一个视图。如果你把一个切片赋值给一个变量,随后改变了切片所在数组的内容,那么变量的值也会改变。(可以理解为变量是切片的引用)

1.下面我们将创建一张图片的副本,同时创建一张图片的视图

    acopy = face.copy()aview = face.view()plot.subplot(211)plot.imshow(acopy)plot.subplot(212)plot.imshow(aview)

这里写图片描述


2.使用flat迭代器,把视图中所有的值清零

如果想对每个数组中元素进行运算,我们可以使用flat属性,该属性是数组元素的一个迭代器.

    aview.flat = 0plot.subplot(211)plot.imshow(acopy)plot.subplot(212)plot.imshow(face)

可以看见,图像已经被清空了

这里写图片描述


本小节所有的代码

    import scipy.misc as miscimport matplotlib.pyplot as plotface = misc.face()acopy = face.copy()aview = face.view()aview.flat = 0   #使用flat迭代器,把视图中所有的值都清零plot.subplot(221)plot.imshow(face) # 处理视图,会影响原图像plot.subplot(222)plot.imshow(acopy)plot.subplot(223)plot.imshow(aview)plot.subplot(224)plot.imshow(aview)

翻转图像

翻转图像

有时在图像处理时,我们需要对图像做翻转操作(例如做图像样本增强操作),处了图像翻转,还会绘制出它的一部分以及对其应用遮罩的效果。

1.绘制翻转后的图像

    plot.subplot(111)plot.imshow(face[:,::-1]) #切片操作 列不变  行翻转 图像水片翻转plot.imshow(face[::-1,:]) #切片操作 行不变  列翻转 图像上下翻转

这里写图片描述


2.绘制图像的一部分

    plot.subplot(111)plot.imshow(face[:face.shape[0]/2,:face.shape[1]/2]) #行列各取一半

这里写图片描述


3.对图像应用遮罩的效果

    mask = face % 2 ==0  #每个像素点每个通道值是否被2整除masked_face = face.copy()masked_face[mask] = 0 # 为true的点像素值置黑plot.subplot(111)plot.imshow(masked_face)

这里写图片描述


本小节所有代码

    import scipy.misc as miscimport matplotlib.pyplot as plotface = misc.face()plot.subplot(221)plot.imshow(face)plot.subplot(222)plot.imshow(face[:,::-1])plot.subplot(223)plot.imshow(face[:face.shape[0]/2,:face.shape[1]/2])mask = face % 2 ==0masked_face = face.copy()masked_face[mask] = 0plot.subplot(224)plot.imshow(masked_face)

高级索引

高级索引

本节将使用高级索引技术,在图像的对角线位置上的数值值零,效果就是在图像上画两条对角线,没有啥实际意义。与常规索引不同的是,高级索引不使用整数或切片作为索引值。

1.把第一条对角线位置上的数值置为白点

    ascent = misc.ascent()xmax = ascent.shape[0]ymax = ascent.shape[1]ascent[range(xmax),range(ymax)] =255  #使用range从0循环到xmax

这里写图片描述


2.两条对角线的值都置为白点

 ascent[range(xmax-1,-1,-1),range(ymax)] =255 #列变量倒序循环

这里写图片描述


本小节所有代码

    import scipy.misc as miscimport matplotlib.pyplot as plotascent = misc.ascent()xmax = ascent.shape[0]ymax = ascent.shape[1]ascent[range(xmax),range(ymax)] =255ascent[range(xmax-1,-1,-1),range(ymax)] =255plot.subplot(111)plot.imshow(ascent)

布尔型索引

布尔型索引

布尔型索引就是基于布尔数组的索引,属于高级索引技术的范畴。

1.在图像中添加点状的对角线

建立函数get_indices用于创建可以整数4的bool型数组,对图像的处理与先前讲的遮盖类似

    def get_indices(size):arr = numpy.arange(size)  # 扩充一个数组,数组值为0-sizereturn arr % 4 == 0 #返回是的bool型数组copy = ascent.copy()xindices = get_indices(ascent.shape[0])yindices = get_indices(ascent.shape[1])copy[xindices,yindices] = 255

这里写图片描述


2.把指定范围内的数值置255(带阻功能)

ascent[(ascent > ascent.max()/4) & (ascent <3 * ascent.max()/4)] = 255  # 将像素值大于最大像素值的1/4小于3/4的像素点设置为白点

这里写图片描述


本小节所有代码

    import scipy.misc as miscimport matplotlib.pyplot as plotascent = misc.ascent()def get_indices(size):arr = numpy.arange(size)  # 扩充一个数组,数组值为0-sizereturn arr % 4 == 0 #返回是的bool型数组copy = ascent.copy()xindices = get_indices(ascent.shape[0])yindices = get_indices(ascent.shape[1])copy[xindices,yindices] = 255plot.subplot(211)plot.imshow(copy)ascent[(ascent > ascent.max()/4) & (ascent <3 * ascent.max()/4)] = 255plot.subplot(212)plot.imshow(ascent)



参考资料

《NumPy攻略》 -Ivan Idris

这篇关于NumPy实战:Chapter-1(初识NumPy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079831

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(