caffe学习笔记-模型代码生成.prototxt文件

2024-06-20 22:18

本文主要是介绍caffe学习笔记-模型代码生成.prototxt文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pycaffe网络定义

以ImageData格式输入,定义输入层:

data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,transform_param=dict(scale= 0.00390625))

定义卷积层:

conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))

定义池化层:

pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)

定义激活函数层:

relu3=L.ReLU(fc3, in_place=True)

定义全连接层:

fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))

计算损失函数:

loss = L.SoftmaxWithLoss(fc4, label)

计算精度:

acc = L.Accuracy(fc4, label)

保存网络定义.prototxt文件

以Lenet为例,网络结构代码如下:

def Lenet(img_list,batch_size,include_acc=False):#第一层,数据输入层,以ImageData格式输入data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,transform_param=dict(scale= 0.00390625))#第二层:卷积层conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))#池化层pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)#卷积层conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))#池化层pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)#全连接层fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))#激活函数层relu3=L.ReLU(fc3, in_place=True)#全连接层fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))#softmax层loss = L.SoftmaxWithLoss(fc4, label)if include_acc:             # test阶段需要有accuracy层acc = L.Accuracy(fc4, label)return to_proto(loss, acc)else:return to_proto(loss)

上述代码中,通过to_proto()函数,保存网络定义,保存为.prototxt文件,

with open(train_proto, 'w') as f:f.write(str(Lenet(train_list,batch_size=64)))

train_list为模型输入,train_proto为.prototxt文件名,保存的.prototxt文件内容如下:

这篇关于caffe学习笔记-模型代码生成.prototxt文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079409

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java中基于注解的代码生成工具MapStruct映射使用详解

《Java中基于注解的代码生成工具MapStruct映射使用详解》MapStruct作为一个基于注解的代码生成工具,为我们提供了一种更加优雅、高效的解决方案,本文主要为大家介绍了它的具体使用,感兴趣... 目录介绍优缺点优点缺点核心注解及详细使用语法说明@Mapper@Mapping@Mappings@Co