Qwen2在Java项目中如何实现优雅的Function_Call工具调用

2024-06-20 22:12

本文主要是介绍Qwen2在Java项目中如何实现优雅的Function_Call工具调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在当今AI技术飞速发展的背景下,大语言模型如Qwen2和GLM-4凭借其强大的语言处理能力,在诸多领域展现出了巨大的潜力。然而,大模型并非全知全能,它们在处理特定任务时,尤其是在需要与外部系统交互或执行具体功能时,会遇到一定的局限性。这主要是因为大模型通常被设计为封闭的文本生成系统,缺乏直接调用外部工具或API的能力。这种局限性凸显了工具调用在实际应用中的必要性,它能够扩展模型的功能边界,使其能够在真实世界场景中执行更加复杂和具体的操作。

工具调用的必要性

尽管大模型在自然语言理解和生成上取得了显著进步,但它们往往受限于训练数据的内容,无法直接访问网络资源、执行代码或操作数据库等。这意味着在解决实际问题时,模型可能无法提供直接、即时且准确的解决方案,尤其是那些需要实时数据处理或特定功能执行的任务。因此,通过工具调用来增强大模型的功能,成为提升其实用性和灵活性的关键。

在此背景下,ChatGLM3以及最近的GLM-4原生就已经支持了工具调用,这就非常方便,通过直接与外部工具交互,减少了中间环节,提高了响应速度和效率。

tools = [{"name": "track","description": "追踪指定股票的实时价格","parameters": {"type": "object","properties": {"symbol": {"description": "需要追踪的股票代码"}},"required": ['symbol']}},{"name": "text-to-speech","description": "将文本转换为语音","parameters": {"type": "object","properties": {"text": {"description": "需要转换成语音的文本"},"voice": {"description": "要使用的语音类型(男声、女声等)"},"speed": {"description": "语音的速度(快、中等、慢等)"}},"required": ['text']}}
]
system_info = {"role": "system", "content": "Answer the following questions as best as you can. You have access to the following tools:", "tools": tools}

但是Qwen1.5以及Qwen2并不具备原生的工具调用功能,得借助于其Qwen-Agent框架或者langChain框架。那不借助Python框架,我就要使用Java实现该怎么做呢?

使用Java实现Qwen2工具调用

首先,我们需要自定义两个注解FunctionDef​和FunctionParam

@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
public @interface FunctionDef {/*** 函数名称* @return 函数名称*/String name() default "";/*** 函数描述* @return 函数描述*/String description();
}@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.PARAMETER})
public @interface FunctionParam {/*** 参数名称* @return 参数名称*/String name();/*** 参数描述* @return 参数描述*/String description();/*** 参数枚举* @return 参数枚举*/String[] enums() default {};/*** 是否必填* @return 必填*/boolean required() default false;
}

然后,我们可以根据自己的需求,创建几个工具插件。下面是我创建的一个查询天气的插件:

public class WeatherTool {/*** 查询天气* @param city 城市* @return 天气信息*/@FunctionDef(name = "getWeatherInfo", description = "get the weather info")public static String getWeatherInfo(@FunctionParam(name = "city", description = "the city name") String city) {if (city == null || city.isEmpty()) {throw new IllegalArgumentException("City name must not be null or empty");}OkHttpClient client = new OkHttpClient.Builder().connectTimeout(60, TimeUnit.SECONDS).writeTimeout(60, TimeUnit.SECONDS).readTimeout(60, TimeUnit.SECONDS).build();try {Map<String, String> headers = new HashMap<>(16);headers.put("Content-Type", "application/json");Request.Builder builder = new Request.Builder().url("https://query.asilu.com/weather/baidu/?city="+city);builder.headers(Headers.of(headers));builder.method("GET", null);Request request = builder.build();Response response = client.newCall(request).execute();if (response.isSuccessful()) {ResponseBody responseBody = response.body();JSONObject jsonObject = JSONObject.parseObject(responseBody.string());return jsonObject.toString();} else {throw new OpenAIChatException("Failed with status code %d. messages: %s", response.code(), response.message());}} catch (IOException e) {e.printStackTrace();return "Error encountered while fetching weather data!";}}
}

再然后,我们把所有的工具插件都交给大模型,让它判断要满足用户的提问,应该选择哪个工具插件:

public String getToolResult(String sessionId,String prompt, List<Function> baseTools){String class2Json = buildClass2Json(new BaseFunction());String finalPrompt = String.format("你是一个AI助手,我会给你一个工具对象集合,工具对象包括name(工具名)、description(工具描述)、clazz(工具类名)、parameters(工具参数)。" +"你可以结合工具对象,从用户的问句中提取到关键词,确定要实现用户的任务应该选择哪个工具对象和工具的参数。" +"【工具集合】:%s。" +"【用户提问】:%s?" +"您的响应结果必须为JSON格式,并且不要返回任何不必要的解释,只提供遵循此格式的符合RFC8259的JSON响应。以下是输出必须遵守的JSON Schema实例:‍```%s‍```",JSON.toJSONString(baseTools),prompt,class2Json);String funcParams = chat(sessionId,finalPrompt);funcParams = JSON.parseObject(funcParams, OpenAIChatResponse.class).getChoices().get(0).getMessage().getContent();funcParams = funcParams.substring(funcParams.indexOf("{"), funcParams.lastIndexOf("}")+1);return LoadFunctions.load(JSON.parseObject(funcParams, BaseFunction.class));}

确定哪个工具插件后,再使用LoadFunctions.load加载执行这个工具插件:

public static String load(BaseFunction baseFunction){String className = baseFunction.getClazz();String methodName = baseFunction.getFunctionName();Map<String,String> arg = baseFunction.getParams();List<String> params = new ArrayList<>();String result = "";try {// 加载类Class<?> clazz = Class.forName(className);//可以使用arg.size确定几个参数,我为了演示方便,这里就默认只有一个参数了//int size = arg.size();Method method = clazz.getMethod(methodName,String.class);Parameter[] parameters = method.getParameters();// 如果方法有参数,并且参数类型已知(例如只有一个String类型的参数)for (int i = 0; i < parameters.length; i++){params.add(arg.values().stream().skip(i).findFirst().orElse(null));}// 创建类的实例,如果CarBean有一个无参构造函数Object instance = clazz.newInstance();result = method.invoke(instance,params.toArray()).toString();} catch (ClassNotFoundException e) {LOG.error("类未找到: {}" , className);} catch (NoSuchMethodException e) {LOG.error("找不到方法: {}" , methodName);} catch (InstantiationException | IllegalAccessException | InvocationTargetException e) {LOG.error("无法调用方法: {}" , e.getMessage());}return result;}

最后,我们就可以拿到工具执行的结果,然后把工具执行结果直接给到大模型,让它组织语言回答用户提问就可以了

public Flux<String> streamChatWithTools(String sessionId, String prompt, List<Function> baseTools) {//获取工具结果String toolResult = getToolResult(null,prompt, baseTools);LOG.info("工具调用结果为:{}",toolResult);String promptFormat = String.format("基于工具查询的结果:{%s}。请回答:%s?", toolResult, prompt);return streamChat(sessionId, promptFormat);}

到这里,我们就完成了像Qwen2这种没有原生支持Function_call的大模型的工具调用的功能了。

改进优化

在最初的版本中,我们是把普通问答和工具调用的问答分开设计的,这样的设计虽然能实现各种不同的功能,但是对于用户并不友好,“我怎么知道什么时候该使用工具模式呢?”。
在这里插入图片描述

因此,我们打算将普通问答模式和工具调用问答模式进行合并。这样,用户只需要专注于自己的问题即可,不用在纠结该选择哪个模式。

首先,我们定义一个返回空字符串的工具插件:

/*** 返回一个空字符串* @return 归属地*/@FunctionDef(name = "getEmptyResult", description = "get a empty result")public static String getEmptyResult() {return "";}

然后,也需要修改一下大模型选择工具插件的提示词,“如果用户提问内容与除了getEmptyResult之外的其他所有的工具都不相关,就返回getEmptyResult”:

public String getToolResult(String sessionId,String prompt, List<Function> baseTools){String class2Json = buildClass2Json(new BaseFunction());String finalPrompt = String.format("你是一个AI助手,我会给你一个工具对象集合,工具对象包括name(工具名)、description(工具描述)、clazz(工具类名)、parameters(工具参数)。" +"你可以结合工具对象,从用户的问句中提取到关键词,确定要实现用户的任务应该选择哪个工具对象和工具的参数。" +"【工具集合】:%s。" +"【用户提问】:%s?" +"如果用户提问内容与除了getEmptyResult之外的其他所有的工具都不相关,则你需要响应getEmptyResult工具即可。"+"您的响应结果必须为JSON格式,并且不要返回任何不必要的解释,只提供遵循此格式的符合RFC8259的JSON响应。以下是输出必须遵守的JSON Schema实例:‍```%s‍```",JSON.toJSONString(baseTools),prompt,class2Json);String funcParams = chat(sessionId,finalPrompt);funcParams = JSON.parseObject(funcParams, OpenAIChatResponse.class).getChoices().get(0).getMessage().getContent();funcParams = funcParams.substring(funcParams.indexOf("{"), funcParams.lastIndexOf("}")+1);return LoadFunctions.load(JSON.parseObject(funcParams, BaseFunction.class));}

这样,如果我如果输入一个问题,如地球的直径是多少。大模型识别这个问题与所有的工具插件都不相关,它就返回一个空字符串,也就是不用基于查询的知识进行回答。

public Flux<String> streamChatWithTools(String sessionId, String prompt, List<Function> baseTools) {//获取工具结果String toolResult = getToolResult(null,prompt, baseTools);LOG.info("工具调用结果为:{}",toolResult);String promptFormat = StringUtils.isEmpty(toolResult) ? String.format("请回答:%s?", prompt):String.format("基于工具查询的结果:{%s}。请回答:%s?", toolResult, prompt);return streamChat(sessionId, promptFormat);}

这样,我们就实现了使用一个接口,同时处理用户的通识问答和需要进行工具调用的问答。

这篇关于Qwen2在Java项目中如何实现优雅的Function_Call工具调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079399

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程