【总线】AXI4第三课时:握手机制

2024-06-20 20:52

本文主要是介绍【总线】AXI4第三课时:握手机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

          大家好,欢迎来到今天的总线学习时间!如果你对电子设计、特别是FPGA和SoC设计感兴趣,那你绝对不能错过我们今天的主角——AXI4总线。作为ARM公司AMBA总线家族中的佼佼者,AXI4以其高性能和高度可扩展性,成为了现代电子系统中不可或缺的通信桥梁。

        上一课时我们了解到AXI4的AXI的基础事务,对他们有了初步的认识,这一课时我们来聊一聊AXI4总线中的“社交礼仪”——握手机制。就像我们在交朋友之前要握手一样,AXI4总线在数据传输前也要进行一套复杂的“礼仪”来确保数据能够顺利、准确地传输。

        这里会有一系列的课程,和大家分享AMBA总线家族,欢迎大家一起学习,收藏点赞。

 系列文章

【总线】AMBA总线架构的发展历程-CSDN博客

【总线】设计fpga系统时,为什么要使用总线?-CSDN博客

【总线】AXI总线:FPGA设计中的通信骨干-CSDN博客

【总线】AMBA总线家族的明星成员:AXI协议简介-CSDN博客

【总线】AXI4第一课时:揭秘AXI4总线的五大独立通道-CSDN博客

【总线】AXI4第二课时:深入AXI4总线的基础事务-CSDN博客

【总线】AXI4第三课时:握手机制-CSDN博客 


目录

AXI4握手机制的优点

如何实现双向流控的

VALID/READY的三种情况

1.双方都准备好了

2.发送方准备好了,接收方还没准备好

3.接收方准备好了,发送方还没准备好

总结

结语


AXI4握手机制的优点

在AXI4总线的世界里,握手不仅仅是礼貌,更是效率和可靠性的保证。以下是握手机制的几个优点:

  1. 确保数据完整性:通过握手,我们可以确保数据在传输过程中不会被损坏。
  2. 提高传输效率:握手机制允许发送方和接收方同步它们的操作,避免了数据拥堵。
  3. 增强通信灵活性:AXI4的握手机制支持灵活的数据传输,可以根据需要调整传输速度和大小。

如何实现双向流控的

AXI4总线的双向流控就像是一场精心编排的舞蹈。以下是实现双向流控的关键步骤:

  1. VALID信号:发送方通过VALID信号告诉接收方,“嘿,我这里有数据要给你!”
  2. READY信号:接收方通过READY信号回复发送方,“好的,我准备好接收了。”
  3. 数据交换:当VALID和READY信号都为高电平时,数据就可以在双方之间流动了。

VALID/READY的三种情况

在AXI4的握手过程中,VALID和READY信号有三种可能的情况,我们可以把它们想象成三种不同的对话场景:

1.双方都准备好了

:VALID和READY都为高,数据传输开始。

图:VALID和READY握手成功

2.发送方准备好了,接收方还没准备好

VALID为高,READY为低,发送方需要等待接收方准备好。

图:发送方等待接收方

3.接收方准备好了,发送方还没准备好

VALID为低,READY为高,这种情况比较少见,意味着接收方在说,“我准备好了,但你的数据呢?”

图:接收方等待发送方

总结

今天我们一起学习了AXI4总线的握手机制,这就像是在数据的高速公路上设置了一套交通规则,确保了数据传输的顺畅和安全。通过VALID和READY信号的互动,我们可以实现高效的双向流控。希望大家能够理解这些概念,并在设计自己的电子系统时运用它们。

这里给大家留一个小任务:思考一下,如果VALID和READY信号出现了“我准备好了,但你的数据呢?”这种情况,我们应该如何优化设计来避免这种尴尬的局面呢?答案评论区见~

结语

感谢大家的参与,希望你们在AXI4的世界里越来越得心应手。下课!

这篇关于【总线】AXI4第三课时:握手机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079225

相关文章

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

Spring中事务的传播机制

一、前言 首先事务传播机制解决了什么问题 Spring 事务传播机制是包含多个事务的方法在相互调用时,事务是如何在这些方法间传播的。 事务的传播级别有 7 个,支持当前事务的:REQUIRED、SUPPORTS、MANDATORY; 不支持当前事务的:REQUIRES_NEW、NOT_SUPPORTED、NEVER,以及嵌套事务 NESTED,其中 REQUIRED 是默认的事务传播级别。

WDF驱动开发-WDF总线枚举(一)

支持在总线驱动程序中进行 PnP 和电源管理 某些设备永久插入系统,而其他设备可以在系统运行时插入和拔出电源。 总线驱动 必须识别并报告连接到其总线的设备,并且他们必须发现并报告系统中设备的到达和离开情况。 总线驱动程序标识和报告的设备称为总线的 子设备。 标识和报告子设备的过程称为 总线枚举。 在总线枚举期间,总线驱动程序会为其子 设备创建设备对象 。  总线驱动程序本质上是同时处理总线枚

多头注意力机制(Multi-Head Attention)

文章目录 多头注意力机制的作用多头注意力机制的工作原理为什么使用多头注意力机制?代码示例 多头注意力机制(Multi-Head Attention)是Transformer架构中的一个核心组件。它在机器翻译、自然语言处理(NLP)等领域取得了显著的成功。多头注意力机制的引入是为了增强模型的能力,使其能够从不同的角度关注输入序列的不同部分,从而捕捉更多层次的信息。 多头注意力机

Linux-笔记 线程同步机制

目录 前言 实现 信号量(Semaphore) 计数型信号量 二值信号量  信号量的原语操作 无名信号量的操作函数 例子 互斥锁(mutex) 互斥锁的操作函数 例子 自旋锁 (Spinlock) 自旋锁与互斥锁的区别 自旋锁的操作函数 例子 前言         线程同步是为了对共享资源的访问进行保护,确保数据的一致性,由于进程中会有多个线程的存在,

Spring 集成 RabbitMQ 与其概念,消息持久化,ACK机制

目录 RabbitMQ 概念exchange交换机机制 什么是交换机binding?Direct Exchange交换机Topic Exchange交换机Fanout Exchange交换机Header Exchange交换机RabbitMQ 的 Hello - Demo(springboot实现)RabbitMQ 的 Hello Demo(spring xml实现)RabbitMQ 在生产环境

吴恩达机器学习 第三课 week2 推荐算法(上)

目录 01 学习目标 02 推荐算法 2.1 定义       2.2 应用 2.3 算法 03 协同过滤推荐算法 04 电影推荐系统 4.1 问题描述 4.2 算法实现 05 总结 01 学习目标      (1)了解推荐算法      (2)掌握协同过滤推荐算法(Collaborative Filtering Recommender Algorithm)原理

Rust:Future、async 异步代码机制示例与分析

0. 异步、并发、并行、进程、协程概念梳理 Rust 的异步机制不是多线程或多进程,而是基于协程(或称为轻量级线程、微线程)的模型,这些协程可以在单个线程内并发执行。这种模型允许在单个线程中通过非阻塞的方式处理多个任务,从而实现高效的并发。 关于“并发”和“并行”的区别,这是两个经常被提及但含义不同的概念: 并发(Concurrency):指的是同时处理多个任务的能力,这些任务可能在同一时

ROS话题通信机制实操C++

ROS话题通信机制实操C++ 创建ROS工程发布方(二狗子)订阅方(翠花)编辑配置文件编译并执行注意订阅的第一条数据丢失 ROS话题通信的理论查阅ROS话题通信流程理论 在ROS话题通信机制实现中,ROS master 不需要实现,且连接的建立也已经被封装了,需要关注的关键点有三个: 发布方(二狗子)订阅方(翠花)数据(此处为普通文本) 创建ROS工程 创建一个ROS工程

Java面试题:内存管理、类加载机制、对象生命周期及性能优化

1. 说一下 JVM 的主要组成部分及其作用? JVM包含两个子系统和两个组件:Class loader(类装载)、Execution engine(执行引擎)、Runtime data area(运行时数据区)、Native Interface(本地接口)。 Class loader(类装载):根据给定的全限定名类名(如:java.lang.Object)装载class文件到Runtim