caffe:math_functions 分析

2024-06-20 19:32
文章标签 caffe math functions 分析

本文主要是介绍caffe:math_functions 分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 目录
    • 主要函数
      • caffe_cpu_gemm 函数
      • caffe_cpu_gemv 函数
      • caffe_axpy 函数
      • caffe_set 函数
      • caffe_add_scalar 函数
      • caffe_copy 函数
      • caffe_scal 函数
      • caffeine_cup_axpby 函数
      • caffe_add caffe_sub caffe_mul caffe_div 函数
      • caffe_powx caffe_sqr caffe_exp caffe_abs 函数
      • int caffe_rng_rand 函数
      • caffe_nextafer 函数
      • caffe_cpu_strided_dot 函数
      • caffe_cpu_hamming_distance 函数
      • caffe_cpu_asum 函数
      • caffe_cpu_scale 函数

主要函数

math_function 定义了caffe 中用到的一些矩阵操作和数值计算的一些函数,这里以float类型为例做简单的分析

1. caffe_cpu_gemm 函数:

template<>
void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA,const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,const float alpha, const float* A, const float* B, const float beta,float* C) {int lda = (TransA == CblasNoTrans) ? K : M;int ldb = (TransB == CblasNoTrans) ? N : K;cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B,ldb, beta, C, N);
}

功能: C=alpha*A*B+beta*C
A,B,C 是输入矩阵(一维数组格式)
CblasRowMajor :数据是行主序的(二维数据也是用一维数组储存的)
TransA, TransB:是否要对A和B做转置操作(CblasTrans CblasNoTrans)
M: A、C 的行数
N: B、C 的列数
K: A 的列数, B 的行数
lda : A的列数(不做转置)行数(做转置)
ldb: B的列数(不做转置)行数(做转置)

2. caffe_cpu_gemv 函数:

template <>
void caffe_cpu_gemv<float>(const CBLAS_TRANSPOSE TransA, const int M,const int N, const float alpha, const float* A, const float* x,const float beta, float* y) {cblas_sgemv(CblasRowMajor, TransA, M, N, alpha, A, N, x, 1, beta, y, 1);
}

功能: y=alpha*A*x+beta*y
其中X和Y是向量,A 是矩阵
M:A 的行数
N:A 的列数
cblas_sgemv 中的 参数1 表示对X和Y的每个元素都进行操作

3.caffe_axpy 函数:

template <>
void caffe_axpy<float>(const int N, const float alpha, const float* X,float* Y) { cblas_saxpy(N, alpha, X, 1, Y, 1); }

功能: Y=alpha*X+Y
N:为X和Y中element的个数

4.caffe_set 函数:

template <typename Dtype>
void caffe_set(const int N, const Dtype alpha, Dtype* Y) {if (alpha == 0) {memset(Y, 0, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)return;}for (int i = 0; i < N; ++i) {Y[i] = alpha; }
}

功能:用常数 alpha 对 Y 进行初始化
函数 void *memset(void *buffer, char c, unsigned count) 一般为新申请的内存做初始化,功能是将buffer所指向内存中的每个字节的内容全部设置为c指定的ASCII值, count为块的大小

5.caffe_add_scalar 函数:

template <>
void caffe_add_scalar(const int N, const float alpha, float* Y) {for (int i = 0; i < N; ++i) {Y[i] += alpha;}
}

功能: 给 Y 的每个 element 加上常数 alpha

6.caffe_copy 函数:

template <typename Dtype>
void caffe_copy(const int N, const Dtype* X, Dtype* Y) {if (X != Y) {if (Caffe::mode() == Caffe::GPU) {
#ifndef CPU_ONLY// NOLINT_NEXT_LINE(caffe/alt_fn)CUDA_CHECK(cudaMemcpy(Y, X, sizeof(Dtype) * N, cudaMemcpyDefault));
#elseNO_GPU;
#endif} else {memcpy(Y, X, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)}}
}

函数 void *memcpy(void *dest, void *src, unsigned int count) 把src所指向的内存区域 copy到dest所指向的内存区域, count为块的大小

7.caffe_scal 函数:

template <>
void caffe_scal<float>(const int N, const float alpha, float *X) {cblas_sscal(N, alpha, X, 1);
}

功能:X = alpha*X
N: X中element的个数

8.caffeine_cup_axpby 函数:

template <>
void caffe_cpu_axpby<float>(const int N, const float alpha, const float* X,const float beta, float* Y) {cblas_saxpby(N, alpha, X, 1, beta, Y, 1);
}

功能:Y= alpha*X+beta*Y

9.caffe_add、 caffe_sub、 caffe_mul、 caffe_div 函数:

template <>
void caffe_add<float>(const int n, const float* a, const float* b,float* y) {vsAdd(n, a, b, y);
}
template <>
void caffe_sub<float>(const int n, const float* a, const float* b,float* y) {vsSub(n, a, b, y);
}template <>
void caffe_mul<float>(const int n, const float* a, const float* b,float* y) {vsMul(n, a, b, y);
}template <>
void caffe_div<float>(const int n, const float* a, const float* b,float* y) {vsDiv(n, a, b, y);
}

功能:这四个函数分别实现element-wise的加减乘除(y[i] = a[i] + - * \ b[i])

10.caffe_powx、 caffe_sqr、 caffe_exp、 caffe_abs 函数:

template <>
void caffe_powx<float>(const int n, const float* a, const float b,float* y) {vsPowx(n, a, b, y);
}template <>
void caffe_sqr<float>(const int n, const float* a, float* y) {vsSqr(n, a, y);
}template <>
void caffe_exp<float>(const int n, const float* a, float* y) {vsExp(n, a, y);
}template <>
void caffe_abs<float>(const int n, const float* a, float* y) {vsAbs(n, a, y);
}

功能 : 同样是element-wise操作,分别是y[i] = a[i] ^ b, y[i] = a[i]^2,y[i] = exp(a[i] ),y[i] = |a[i] |

11.int caffe_rng_rand 函数:

unsigned int caffe_rng_rand() {return (*caffe_rng())();
}

功能:返回一个随机数

12.caffe_nextafer 函数:

template <typename Dtype>
Dtype caffe_nextafter(const Dtype b) {return boost::math::nextafter<Dtype>(b, std::numeric_limits<Dtype>::max());
}

功能 : 返回 b 最大方向上可以表示的最接近的数值。

13.caffe_cpu_strided_dot 函数:

template <>
double caffe_cpu_strided_dot<double>(const int n, const double* x,const int incx, const double* y, const int incy) {return cblas_ddot(n, x, incx, y, incy);
}

功能: 返回 vector X 和 vector Y 的内积。
incx, incy : 步长,即每隔incx 或 incy 个element 进行操作。

14.caffe_cpu_hamming_distance 函数:

template <>
int caffe_cpu_hamming_distance<float>(const int n, const float* x,const float* y) {int dist = 0;for (int i = 0; i < n; ++i) {dist += __builtin_popcount(static_cast<uint32_t>(x[i]) ^static_cast<uint32_t>(y[i]));}return dist;
}

功能:返回 x 和 y 之间的海明距离。(两个等长字符串之间的海明距离是两个字符串对应位置的不同字符的个数。)

15. caffe_cpu_asum 函数:

template <>
float caffe_cpu_asum<float>(const int n, const float* x) {return cblas_sasum(n, x, 1);
}

功能:计算 vector x 的所有element的绝对值之和。

16.caffe_cpu_scale 函数:

template <>
void caffe_cpu_scale<float>(const int n, const float alpha, const float *x,float* y) {cblas_scopy(n, x, 1, y, 1);cblas_sscal(n, alpha, y, 1);
}

功能:y = alpha*x


原文链接: http://blog.csdn.net/seven_first/article/details/47378697#4caffeset-函数

这篇关于caffe:math_functions 分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079051

相关文章

UnityException: Gizmo drawing functions can only be used in OnDrawGizmos and OnDrawGizmosSelected.

You don't have to call OnDrawGizmos() From anywhere, it is a editor function to display gizmos in the scene-view and is called automatically called!! 不能在任何地方调用 OnDrawGizmos(),这个函数是自动调用的。这个函数是编辑器函数,用来

[职场] 公务员的利弊分析 #知识分享#经验分享#其他

公务员的利弊分析     公务员作为一种稳定的职业选择,一直备受人们的关注。然而,就像任何其他职业一样,公务员职位也有其利与弊。本文将对公务员的利弊进行分析,帮助读者更好地了解这一职业的特点。 利: 1. 稳定的职业:公务员职位通常具有较高的稳定性,一旦进入公务员队伍,往往可以享受到稳定的工作环境和薪资待遇。这对于那些追求稳定的人来说,是一个很大的优势。 2. 薪资福利优厚:公务员的薪资和

高度内卷下,企业如何通过VOC(客户之声)做好竞争分析?

VOC,即客户之声,是一种通过收集和分析客户反馈、需求和期望,来洞察市场趋势和竞争对手动态的方法。在高度内卷的市场环境下,VOC不仅能够帮助企业了解客户的真实需求,还能为企业提供宝贵的竞争情报,助力企业在竞争中占据有利地位。 那么,企业该如何通过VOC(客户之声)做好竞争分析呢?深圳天行健企业管理咨询公司解析如下: 首先,要建立完善的VOC收集机制。这包括通过线上渠道(如社交媒体、官网留言

简说caffe

Caffe(Convolutional Architecture for Fast Feature Embedding)是一个开源的深度学习框架,由加州大学伯克利分校的Berkeley Vision and Learning Center(BVLC)开发。它主要用于图像分类、分割和图像生成等任务。以下是对Caffe的专业详解,包括其特点、核心组件、使用方法、应用场景以及优势和局限性。 一、特点

打包体积分析和优化

webpack分析工具:webpack-bundle-analyzer 1. 通过<script src="./vue.js"></script>方式引入vue、vuex、vue-router等包(CDN) // webpack.config.jsif(process.env.NODE_ENV==='production') {module.exports = {devtool: 'none

Java中的大数据处理与分析架构

Java中的大数据处理与分析架构 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来讨论Java中的大数据处理与分析架构。随着大数据时代的到来,海量数据的存储、处理和分析变得至关重要。Java作为一门广泛使用的编程语言,在大数据领域有着广泛的应用。本文将介绍Java在大数据处理和分析中的关键技术和架构设计。 大数据处理与

段,页,段页,三种内存(RAM)管理机制分析

段,页,段页         是为实现虚拟内存而产生的技术。直接使用物理内存弊端:地址空间不隔离,内存使用效率低。 段 段:就是按照二进制文件的格式,在内存给进程分段(包括堆栈、数据段、代码段)。通过段寄存器中的段表来进行虚拟地址和物理地址的转换。 段实现的虚拟地址 = 段号+offset 物理地址:被分为很多个有编号的段,每个进程的虚拟地址都有段号,这样可以实现虚实地址之间的转换。其实所谓的地

mediasoup 源码分析 (八)分析PlainTransport

mediasoup 源码分析 (六)分析PlainTransport 一、接收裸RTP流二、mediasoup 中udp建立过程 tips 一、接收裸RTP流 PlainTransport 可以接收裸RTP流,也可以接收AES加密的RTP流。源码中提供了一个通过ffmpeg发送裸RTP流到mediasoup的脚本,具体地址为:mediasoup-demo/broadcaste

Java并发编程—阻塞队列源码分析

在前面几篇文章中,我们讨论了同步容器(Hashtable、Vector),也讨论了并发容器(ConcurrentHashMap、CopyOnWriteArrayList),这些工具都为我们编写多线程程序提供了很大的方便。今天我们来讨论另外一类容器:阻塞队列。   在前面我们接触的队列都是非阻塞队列,比如PriorityQueue、LinkedList(LinkedList是双向链表,它实现了D

线程池ThreadPoolExecutor类源码分析

Java并发编程:线程池的使用   在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:   如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。   那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?