深入探究RTOS的IPC机制----邮箱

2024-06-20 18:28

本文主要是介绍深入探究RTOS的IPC机制----邮箱,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阅读引言: 因为将来工作需要, 最近在深入学习OS的内部机制,我把我觉得重要的、核心的东西分享出来, 希望对有需要的人有所帮助, 阅读此文需要读友有RTOS基础, 以及一些操作系统的基础知识, 学习过Linux的最佳, 特别是想RT-Thread适合Linux非常像的, 代码风格、IPC机制等等。

目录

一、RT-Thread中邮箱的特性

二、 邮箱的源码实现

1,邮箱控制块

2, 创建/初始化邮箱

3, 往邮箱中发送邮件

三、邮箱的简单使用


其实想深入的理解OS的内部工作机制, 无非就是涉及到一个问题, OS使用了那些数据结构组织和管理这些内核对象, 从而实现功能的。RTOS就两点链表和定时器

一、RT-Thread中邮箱的特性

消息队列的本质是链表:
 空闲消息块链表:往队列里写入消息时,先从空闲链表中得到消息块;从队列读出消息后,把消息块放入空闲链表
 消息块头部链表:消息写入消息块后,该消息块被放到尾部;从队列里读消息时,从头部读。


使用消息队列可以传递各类大小的消息,它使用memcpy的方式写入消息、读出消息。


如果我们只是传递很小的数据,比如一些数值,可以使用邮箱:它的效率更高。这一点就可以理解为邮箱和消息队列的区别
 

邮箱在内核中的实现使用的数据结构是一个循环缓冲区, 代码再后面展示

邮箱中的每一封邮件,只能容纳4字节内容(对于32位系统,指针大小刚好为4字节);发送邮件的源码如下, 邮箱中邮件的大小定死了。


 邮件的发送通常是非阻塞的,线程、中断都可以发送邮件;也可使用阻塞方式发送;
 邮件的接收通常是阻塞的,取决于邮箱中是否有邮件;
 当一个线程向邮箱发送邮件时, 如果邮箱没满,就把数值写入邮箱中
 如果邮箱满了, 发送线程可以直接返回-RT_EFULL, 也可以挂起一段时间,在挂起的期间,别的线程或中断服务程序读了邮箱,会唤醒挂起的线程。


 当一个线程从邮箱接收邮件时:如果邮箱不为空,就读取邮箱中的数值, 如果邮箱为空:接收线可以直接返回-RT_ETIMOUT, 也可以挂起一段时间,在挂起的期间,别的线程或中断服务程序写了邮箱,会唤醒挂起的线程。

二、 邮箱的源码实现

使用邮箱的流程:创建/初始化邮箱、发送邮件、接收邮件、删除/脱离邮箱。

1,邮箱控制块

2, 创建/初始化邮箱

#ifdef RT_USING_HEAP
/*** This function will create a mailbox object from system resource** @param name the name of mailbox* @param size the size of mailbox, 邮箱中邮件的数量, 每一封邮件4byte* @param flag the flag of mailbox, 邮箱采用的等待方式, 优先级, 等待的时间大小** @return the created mailbox, RT_NULL on error happen*/
rt_mailbox_t rt_mb_create(const char *name, rt_size_t size, rt_uint8_t flag)   //flag为邮箱等待方式
{rt_mailbox_t mb;                            //定义一个邮箱结构体指针RT_DEBUG_NOT_IN_INTERRUPT;/* allocate object, 为邮箱这样一个内核对象分配内存空间 */mb = (rt_mailbox_t)rt_object_allocate(RT_Object_Class_MailBox, name);if (mb == RT_NULL)return mb;/* set parent */mb->parent.parent.flag = flag;            //从内核对象的基类继承过来, 初始化成员/* initialize ipc object */rt_ipc_object_init(&(mb->parent));/* initialize mailbox */mb->size     = size;/* 申请邮件的空间, 根据邮件的数量 * 固定大小(4byte) */mb->msg_pool = (rt_ubase_t *)RT_KERNEL_MALLOC(mb->size * sizeof(rt_ubase_t));  //每一封邮件大小4byteif (mb->msg_pool == RT_NULL){/* delete mailbox object */rt_object_delete(&(mb->parent.parent));return RT_NULL;}mb->entry      = 0;mb->in_offset  = 0;mb->out_offset = 0;/* initialize an additional list of sender suspend thread */rt_list_init(&(mb->suspend_sender_thread));return mb;
}
RTM_EXPORT(rt_mb_create);

前面我们说邮箱的数据结构是一个循环缓存区, 是从源码的这个位置看出来的。

  

3, 往邮箱中发送邮件

/*** This function will send a mail to mailbox object. If the mailbox is full,* current thread will be suspended until timeout.** @param mb the mailbox object* @param value the mail* @param timeout the waiting time** @return the error code*/
rt_err_t rt_mb_send_wait(rt_mailbox_t mb,    		//往哪一个邮箱中发送邮件rt_ubase_t   value,        //邮件内容rt_int32_t   timeout)		//超时等待时间
{struct rt_thread *thread;   		//定义一个线程指针register rt_ubase_t temp;		    //unsigned long类型的变量rt_uint32_t tick_delta; 			//unsigned int类型的变量/* parameter check */RT_ASSERT(mb != RT_NULL);RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);/* initialize delta tick */tick_delta = 0;/* get current thread */thread = rt_thread_self();		//获取自己的线程控制块RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mb->parent.parent)));/* disable interrupt */temp = rt_hw_interrupt_disable();/* for non-blocking call, 邮箱中没位置 */if (mb->entry == mb->size && timeout == 0){rt_hw_interrupt_enable(temp);return -RT_EFULL;}/* mailbox is full 当邮箱中没位置时, 设置了超时时间的情况 */while (mb->entry == mb->size){/* reset error number in thread */thread->error = RT_EOK;/* no waiting, return timeout */if (timeout == 0){/* enable interrupt */rt_hw_interrupt_enable(temp);return -RT_EFULL;}RT_DEBUG_IN_THREAD_CONTEXT;/* suspend current thread */rt_ipc_list_suspend(&(mb->suspend_sender_thread),thread,mb->parent.parent.flag);/* has waiting time, start thread timer */if (timeout > 0){/* get the start tick of timer */tick_delta = rt_tick_get();RT_DEBUG_LOG(RT_DEBUG_IPC, ("mb_send_wait: start timer of thread:%s\n",thread->name));/* reset the timeout of thread timer and start it */rt_timer_control(&(thread->thread_timer),RT_TIMER_CTRL_SET_TIME,&timeout);rt_timer_start(&(thread->thread_timer));}/* enable interrupt */rt_hw_interrupt_enable(temp);/* re-schedule */rt_schedule();/* resume from suspend state */if (thread->error != RT_EOK){/* return error */return thread->error;}/* disable interrupt */temp = rt_hw_interrupt_disable();/* if it's not waiting forever and then re-calculate timeout tick */if (timeout > 0){tick_delta = rt_tick_get() - tick_delta;timeout -= tick_delta;if (timeout < 0)timeout = 0;}}/* set ptr */mb->msg_pool[mb->in_offset] = value;/* increase input offset */++ mb->in_offset;if (mb->in_offset >= mb->size)mb->in_offset = 0;if(mb->entry < RT_MB_ENTRY_MAX){/* increase message entry */mb->entry ++;}else{rt_hw_interrupt_enable(temp); /* enable interrupt */return -RT_EFULL; /* value overflowed */}/* resume suspended thread */if (!rt_list_isempty(&mb->parent.suspend_thread)){rt_ipc_list_resume(&(mb->parent.suspend_thread));/* enable interrupt */rt_hw_interrupt_enable(temp);rt_schedule();return RT_EOK;}/* enable interrupt */rt_hw_interrupt_enable(temp);return RT_EOK;
}
RTM_EXPORT(rt_mb_send_wait);

三、邮箱的简单使用

这篇关于深入探究RTOS的IPC机制----邮箱的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078906

相关文章

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

Spring中事务的传播机制

一、前言 首先事务传播机制解决了什么问题 Spring 事务传播机制是包含多个事务的方法在相互调用时,事务是如何在这些方法间传播的。 事务的传播级别有 7 个,支持当前事务的:REQUIRED、SUPPORTS、MANDATORY; 不支持当前事务的:REQUIRES_NEW、NOT_SUPPORTED、NEVER,以及嵌套事务 NESTED,其中 REQUIRED 是默认的事务传播级别。

Python利用qq邮箱发送通知邮件(已封装成model)

因为经常喜欢写一些脚本、爬虫之类的东西,有需要通知的时候,总是苦于没有太好的通知方式,虽然邮件相对于微信、短信来说,接收性差了一些,但毕竟免费,而且支持html直接渲染,所以,折腾了一个可以直接使用的sendemail模块。这里主要应用的是QQ发邮件,微信关注QQ邮箱后,也可以实时的接收到消息,肾好! 好了,废话不多说,直接上代码。 # encoding: utf-8import lo

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<

从《深入设计模式》一书中学到的编程智慧

软件设计原则   优秀设计的特征   在开始学习实际的模式前,让我们来看看软件架构的设计过程,了解一下需要达成目标与需要尽量避免的陷阱。 代码复用 无论是开发何种软件产品,成本和时间都最重要的两个维度。较短的开发时间意味着可比竞争对手更早进入市场; 较低的开发成本意味着能够留出更多营销资金,因此能更广泛地覆盖潜在客户。 代码复用是减少开发成本时最常用的方式之一。其意图

[大师C语言(第三十六篇)]C语言信号处理:深入解析与实战

引言 在计算机科学中,信号是一种软件中断,它允许进程之间或进程与内核之间进行通信。信号处理是操作系统中的一个重要概念,它允许程序对各种事件做出响应,例如用户中断、硬件异常和系统调用。C语言作为一门接近硬件的编程语言,提供了强大的信号处理能力。本文将深入探讨C语言信号处理的技术和方法,帮助读者掌握C语言处理信号的高级技巧。 第一部分:C语言信号处理基础 1.1 信号的概念 在Unix-lik

WeakHashMap深入理解

这一章,我们对WeakHashMap进行学习。 我们先对WeakHashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用WeakHashMap。 第1部分 WeakHashMap介绍 第2部分 WeakHashMap数据结构 第3部分 WeakHashMap源码解析(基于JDK1.6.0_45) 第4部分 WeakHashMap遍历方式 第5部分 WeakHashMap示例

多头注意力机制(Multi-Head Attention)

文章目录 多头注意力机制的作用多头注意力机制的工作原理为什么使用多头注意力机制?代码示例 多头注意力机制(Multi-Head Attention)是Transformer架构中的一个核心组件。它在机器翻译、自然语言处理(NLP)等领域取得了显著的成功。多头注意力机制的引入是为了增强模型的能力,使其能够从不同的角度关注输入序列的不同部分,从而捕捉更多层次的信息。 多头注意力机

Linux-笔记 线程同步机制

目录 前言 实现 信号量(Semaphore) 计数型信号量 二值信号量  信号量的原语操作 无名信号量的操作函数 例子 互斥锁(mutex) 互斥锁的操作函数 例子 自旋锁 (Spinlock) 自旋锁与互斥锁的区别 自旋锁的操作函数 例子 前言         线程同步是为了对共享资源的访问进行保护,确保数据的一致性,由于进程中会有多个线程的存在,

Spring 集成 RabbitMQ 与其概念,消息持久化,ACK机制

目录 RabbitMQ 概念exchange交换机机制 什么是交换机binding?Direct Exchange交换机Topic Exchange交换机Fanout Exchange交换机Header Exchange交换机RabbitMQ 的 Hello - Demo(springboot实现)RabbitMQ 的 Hello Demo(spring xml实现)RabbitMQ 在生产环境