深入探究RTOS的IPC机制----邮箱

2024-06-20 18:28

本文主要是介绍深入探究RTOS的IPC机制----邮箱,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阅读引言: 因为将来工作需要, 最近在深入学习OS的内部机制,我把我觉得重要的、核心的东西分享出来, 希望对有需要的人有所帮助, 阅读此文需要读友有RTOS基础, 以及一些操作系统的基础知识, 学习过Linux的最佳, 特别是想RT-Thread适合Linux非常像的, 代码风格、IPC机制等等。

目录

一、RT-Thread中邮箱的特性

二、 邮箱的源码实现

1,邮箱控制块

2, 创建/初始化邮箱

3, 往邮箱中发送邮件

三、邮箱的简单使用


其实想深入的理解OS的内部工作机制, 无非就是涉及到一个问题, OS使用了那些数据结构组织和管理这些内核对象, 从而实现功能的。RTOS就两点链表和定时器

一、RT-Thread中邮箱的特性

消息队列的本质是链表:
 空闲消息块链表:往队列里写入消息时,先从空闲链表中得到消息块;从队列读出消息后,把消息块放入空闲链表
 消息块头部链表:消息写入消息块后,该消息块被放到尾部;从队列里读消息时,从头部读。


使用消息队列可以传递各类大小的消息,它使用memcpy的方式写入消息、读出消息。


如果我们只是传递很小的数据,比如一些数值,可以使用邮箱:它的效率更高。这一点就可以理解为邮箱和消息队列的区别
 

邮箱在内核中的实现使用的数据结构是一个循环缓冲区, 代码再后面展示

邮箱中的每一封邮件,只能容纳4字节内容(对于32位系统,指针大小刚好为4字节);发送邮件的源码如下, 邮箱中邮件的大小定死了。


 邮件的发送通常是非阻塞的,线程、中断都可以发送邮件;也可使用阻塞方式发送;
 邮件的接收通常是阻塞的,取决于邮箱中是否有邮件;
 当一个线程向邮箱发送邮件时, 如果邮箱没满,就把数值写入邮箱中
 如果邮箱满了, 发送线程可以直接返回-RT_EFULL, 也可以挂起一段时间,在挂起的期间,别的线程或中断服务程序读了邮箱,会唤醒挂起的线程。


 当一个线程从邮箱接收邮件时:如果邮箱不为空,就读取邮箱中的数值, 如果邮箱为空:接收线可以直接返回-RT_ETIMOUT, 也可以挂起一段时间,在挂起的期间,别的线程或中断服务程序写了邮箱,会唤醒挂起的线程。

二、 邮箱的源码实现

使用邮箱的流程:创建/初始化邮箱、发送邮件、接收邮件、删除/脱离邮箱。

1,邮箱控制块

2, 创建/初始化邮箱

#ifdef RT_USING_HEAP
/*** This function will create a mailbox object from system resource** @param name the name of mailbox* @param size the size of mailbox, 邮箱中邮件的数量, 每一封邮件4byte* @param flag the flag of mailbox, 邮箱采用的等待方式, 优先级, 等待的时间大小** @return the created mailbox, RT_NULL on error happen*/
rt_mailbox_t rt_mb_create(const char *name, rt_size_t size, rt_uint8_t flag)   //flag为邮箱等待方式
{rt_mailbox_t mb;                            //定义一个邮箱结构体指针RT_DEBUG_NOT_IN_INTERRUPT;/* allocate object, 为邮箱这样一个内核对象分配内存空间 */mb = (rt_mailbox_t)rt_object_allocate(RT_Object_Class_MailBox, name);if (mb == RT_NULL)return mb;/* set parent */mb->parent.parent.flag = flag;            //从内核对象的基类继承过来, 初始化成员/* initialize ipc object */rt_ipc_object_init(&(mb->parent));/* initialize mailbox */mb->size     = size;/* 申请邮件的空间, 根据邮件的数量 * 固定大小(4byte) */mb->msg_pool = (rt_ubase_t *)RT_KERNEL_MALLOC(mb->size * sizeof(rt_ubase_t));  //每一封邮件大小4byteif (mb->msg_pool == RT_NULL){/* delete mailbox object */rt_object_delete(&(mb->parent.parent));return RT_NULL;}mb->entry      = 0;mb->in_offset  = 0;mb->out_offset = 0;/* initialize an additional list of sender suspend thread */rt_list_init(&(mb->suspend_sender_thread));return mb;
}
RTM_EXPORT(rt_mb_create);

前面我们说邮箱的数据结构是一个循环缓存区, 是从源码的这个位置看出来的。

  

3, 往邮箱中发送邮件

/*** This function will send a mail to mailbox object. If the mailbox is full,* current thread will be suspended until timeout.** @param mb the mailbox object* @param value the mail* @param timeout the waiting time** @return the error code*/
rt_err_t rt_mb_send_wait(rt_mailbox_t mb,    		//往哪一个邮箱中发送邮件rt_ubase_t   value,        //邮件内容rt_int32_t   timeout)		//超时等待时间
{struct rt_thread *thread;   		//定义一个线程指针register rt_ubase_t temp;		    //unsigned long类型的变量rt_uint32_t tick_delta; 			//unsigned int类型的变量/* parameter check */RT_ASSERT(mb != RT_NULL);RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);/* initialize delta tick */tick_delta = 0;/* get current thread */thread = rt_thread_self();		//获取自己的线程控制块RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mb->parent.parent)));/* disable interrupt */temp = rt_hw_interrupt_disable();/* for non-blocking call, 邮箱中没位置 */if (mb->entry == mb->size && timeout == 0){rt_hw_interrupt_enable(temp);return -RT_EFULL;}/* mailbox is full 当邮箱中没位置时, 设置了超时时间的情况 */while (mb->entry == mb->size){/* reset error number in thread */thread->error = RT_EOK;/* no waiting, return timeout */if (timeout == 0){/* enable interrupt */rt_hw_interrupt_enable(temp);return -RT_EFULL;}RT_DEBUG_IN_THREAD_CONTEXT;/* suspend current thread */rt_ipc_list_suspend(&(mb->suspend_sender_thread),thread,mb->parent.parent.flag);/* has waiting time, start thread timer */if (timeout > 0){/* get the start tick of timer */tick_delta = rt_tick_get();RT_DEBUG_LOG(RT_DEBUG_IPC, ("mb_send_wait: start timer of thread:%s\n",thread->name));/* reset the timeout of thread timer and start it */rt_timer_control(&(thread->thread_timer),RT_TIMER_CTRL_SET_TIME,&timeout);rt_timer_start(&(thread->thread_timer));}/* enable interrupt */rt_hw_interrupt_enable(temp);/* re-schedule */rt_schedule();/* resume from suspend state */if (thread->error != RT_EOK){/* return error */return thread->error;}/* disable interrupt */temp = rt_hw_interrupt_disable();/* if it's not waiting forever and then re-calculate timeout tick */if (timeout > 0){tick_delta = rt_tick_get() - tick_delta;timeout -= tick_delta;if (timeout < 0)timeout = 0;}}/* set ptr */mb->msg_pool[mb->in_offset] = value;/* increase input offset */++ mb->in_offset;if (mb->in_offset >= mb->size)mb->in_offset = 0;if(mb->entry < RT_MB_ENTRY_MAX){/* increase message entry */mb->entry ++;}else{rt_hw_interrupt_enable(temp); /* enable interrupt */return -RT_EFULL; /* value overflowed */}/* resume suspended thread */if (!rt_list_isempty(&mb->parent.suspend_thread)){rt_ipc_list_resume(&(mb->parent.suspend_thread));/* enable interrupt */rt_hw_interrupt_enable(temp);rt_schedule();return RT_EOK;}/* enable interrupt */rt_hw_interrupt_enable(temp);return RT_EOK;
}
RTM_EXPORT(rt_mb_send_wait);

三、邮箱的简单使用

这篇关于深入探究RTOS的IPC机制----邮箱的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078906

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示