深入了解python生成器(generator)

2024-06-20 12:04

本文主要是介绍深入了解python生成器(generator),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生成器

生成器是 Python 中一种特殊类型的迭代器。生成器允许你定义一个函数来动态产生值,而不是一次性生成所有值并将它们存储在内存中。生成器使用 yield 关键字来逐个返回值。每次调用生成器函数时,函数会在 yield 语句暂停,并记住当前的执行状态,以便下次从该点继续执行。

生成器的特点

  1. 惰性求值:生成器会在需要时生成值,而不是一次性生成所有值,节省内存。
  2. 保持状态:生成器记住上次返回值的位置,并从该点继续执行。
  3. 简洁易读:使用生成器表达式可以在单行代码中生成复杂的数据流。

如何定义生成器

生成器通过定义一个包含 yield 语句的函数来创建。当该函数被调用时,返回一个生成器对象。

def my_generator():yield 1yield 2yield 3gen = my_generator()
print(next(gen))  # 输出:1
print(next(gen))  # 输出:2
print(next(gen))  # 输出:3

使用 yield 语句

yield 语句用于生成一个值,并暂停函数的执行。函数状态会被保留,以便下次调用生成器函数时从暂停点继续。

def countdown(n):while n > 0:yield nn -= 1for num in countdown(5):print(num)

生成器表达式

生成器表达式是一种简洁的方式来创建生成器,类似于列表推导式,但使用圆括号而不是方括号。

gen_expr = (x * x for x in range(5))
for num in gen_expr:print(num)

内置生成器函数

Python 提供了一些内置函数,返回生成器对象,例如 range(), map(), filter()zip()

# range() 返回一个生成器
for i in range(5):print(i)# map() 返回一个生成器
squared = map(lambda x: x * x, range(5))
for num in squared:print(num)# filter() 返回一个生成器
evens = filter(lambda x: x % 2 == 0, range(10))
for num in evens:print(num)

生成器与内存效率

生成器在处理大量数据时特别有用,因为它们不需要一次性加载所有数据,而是按需生成数据,从而大大节省了内存

# 使用列表处理大数据
large_list = [x * x for x in range(10**6)]
# 使用生成器处理大数据
large_gen = (x * x for x in range(10**6))

yieldreturn 的区别

  • yield 生成一个值并暂停函数的执行,保留函数的状态。
  • return 结束函数的执行并返回一个值。
def simple_generator():yield "Hello"yield "World"def simple_function():return "Hello"return "World"gen = simple_generator()
print(next(gen))  # 输出:Hello
print(next(gen))  # 输出:Worldfunc = simple_function()
print(func)  # 输出:Hello

生成器的方法

生成器对象有以下方法:

  • __next__(): 返回生成器的下一个值,或在没有更多值时引发 StopIteration
  • send(value): 向生成器发送一个值,并返回下一个 yield 表达式的值。
  • throw(type, value=None, traceback=None): 在生成器中引发异常。
  • close(): 关闭生成器,终止其执行。
def generator():try:while True:value = (yield)print(f'Received: {value}')except GeneratorExit:print('Generator closed')gen = generator()
next(gen)
gen.send(10)
gen.send(20)
gen.close()

总结

生成器是 Python 中强大的工具,用于高效地处理大量数据或流数据。它们通过 yield 关键字生成值,保持函数状态,支持惰性求值,并且内存效率高。了解生成器的工作原理和用法,对于编写高效、可维护的 Python 代码至关重要。

这篇关于深入了解python生成器(generator)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078083

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.