基于Netty实现可靠消息传递的重发机制详解

2024-06-20 07:20

本文主要是介绍基于Netty实现可靠消息传递的重发机制详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Netty实现可靠消息传递的重发机制详解

本文详细介绍了如何使用Netty框架实现可靠的消息传递机制,特别是消息的重发机制。Netty本身没有内置重发功能,但通过定时任务、消息确认和重试策略,我们可以构建一个健壮的重发系统。示例代码包括客户端和服务器端的实现,展示了如何在发送消息失败或未收到确认时进行重发,确保消息可靠传递。这一机制对于需要高可靠性的数据传输应用非常有用。

基本思路

  • 消息发送和重发逻辑:每次发送消息时,记录该消息以及发送时间,并在一定时间内等待响应。如果没有响应,则重新发送该消息,直到达到最大重发次数。
  • 消息确认:服务器接收到消息后,需要返回一个确认消息(ACK),客户端收到ACK后可以认为该消息发送成功。
  • 超时检测:使用定时任务来检测消息是否超时,如果超时则重发。

代码示例

以下是一个实现上述思路的详细代码示例:

1. 客户端代码

首先,定义一个Netty客户端,包含重发机制。

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;public class NettyClient {private final String host;private final int port;private final Bootstrap bootstrap;private final EventLoopGroup group;private final ConcurrentHashMap<String, Message> pendingMessages;public NettyClient(String host, int port) {this.host = host;this.port = port;this.group = new NioEventLoopGroup();this.bootstrap = new Bootstrap();this.pendingMessages = new ConcurrentHashMap<>();}public void start() {try {bootstrap.group(group).channel(NioSocketChannel.class).option(ChannelOption.SO_KEEPALIVE, true).handler(new ChannelInitializer<SocketChannel>() {@Overridepublic void initChannel(SocketChannel ch) {ch.pipeline().addLast(new ClientHandler(pendingMessages));}});ChannelFuture future = bootstrap.connect(host, port).sync();future.channel().closeFuture().sync();} catch (Exception e) {e.printStackTrace();} finally {group.shutdownGracefully();}}public void sendMessage(Channel channel, String message) {Message msg = new Message(message, channel);pendingMessages.put(message, msg);channel.writeAndFlush(message);scheduleResend(msg);}private void scheduleResend(Message msg) {ScheduledFuture<?> future = group.schedule(() -> {if (msg.incrementRetryCount() > 3) {System.err.println("Message failed after 3 retries: " + msg.getContent());pendingMessages.remove(msg.getContent());} else {System.out.println("Resending message: " + msg.getContent());msg.getChannel().writeAndFlush(msg.getContent());scheduleResend(msg);}}, 5, TimeUnit.SECONDS);msg.setFuture(future);}public static void main(String[] args) {NettyClient client = new NettyClient("localhost", 8080);client.start();}
}

2. Message 类

Message类用于封装消息和相关的重发信息。

import io.netty.channel.Channel;import java.util.concurrent.ScheduledFuture;public class Message {private final String content;private final Channel channel;private int retryCount;private ScheduledFuture<?> future;public Message(String content, Channel channel) {this.content = content;this.channel = channel;this.retryCount = 0;}public String getContent() {return content;}public Channel getChannel() {return channel;}public int incrementRetryCount() {return ++retryCount;}public void setFuture(ScheduledFuture<?> future) {this.future = future;}public void cancelFuture() {if (future != null) {future.cancel(true);}}
}

3. ClientHandler 类

ClientHandler处理服务器响应和确认消息。

import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;import java.util.concurrent.ConcurrentHashMap;public class ClientHandler extends ChannelInboundHandlerAdapter {private final ConcurrentHashMap<String, Message> pendingMessages;public ClientHandler(ConcurrentHashMap<String, Message> pendingMessages) {this.pendingMessages = pendingMessages;}@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {String response = (String) msg;if (pendingMessages.containsKey(response)) {Message message = pendingMessages.remove(response);message.cancelFuture();System.out.println("Received ACK for message: " + response);} else {System.out.println("Received message from server: " + response);}}@Overridepublic void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {cause.printStackTrace();ctx.close();}
}

4. 服务器代码

服务器简单地返回ACK消息,确认收到客户端的消息。

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;public class NettyServer {private final int port;public NettyServer(int port) {this.port = port;}public void start() {EventLoopGroup bossGroup = new NioEventLoopGroup(1);EventLoopGroup workerGroup = new NioEventLoopGroup();try {ServerBootstrap bootstrap = new ServerBootstrap();bootstrap.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).childHandler(new ChannelInitializer<SocketChannel>() {@Overridepublic void initChannel(SocketChannel ch) {ch.pipeline().addLast(new ServerHandler());}});ChannelFuture future = bootstrap.bind(port).sync();future.channel().closeFuture().sync();} catch (Exception e) {e.printStackTrace();} finally {bossGroup.shutdownGracefully();workerGroup.shutdownGracefully();}}public static void main(String[] args) {NettyServer server = new NettyServer(8080);server.start();}
}

5. ServerHandler 类

ServerHandler处理客户端消息并发送ACK。

import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;public class ServerHandler extends ChannelInboundHandlerAdapter {@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {String message = (String) msg;System.out.println("Received message from client: " + message);ctx.writeAndFlush(message);  // Send ACK}@Overridepublic void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {cause.printStackTrace();ctx.close();}
}

解释

  • 客户端启动:NettyClient启动并连接到服务器。
  • 消息发送和重发:通过sendMessage方法发送消息,并在消息未确认时进行重发。重发的逻辑通过ScheduledFuture实现,每次重发后会重新计划下一次重发,直到达到最大重发次数。
  • 消息确认:客户端在接收到服务器的ACK消息后,取消重发计划并移除待确认的消息。
  • 服务器处理:NettyServer和ServerHandler处理客户端的消息,并简单地返回ACK确认消息。

通过这种方式,我们实现了一个基于Netty的简单消息重发机制。可以根据实际需求进一步扩展和优化,例如添加更多的错误处理、日志记录和不同类型的消息处理。

这篇关于基于Netty实现可靠消息传递的重发机制详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077467

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P