python使用多进程加快处理数据

2024-06-20 06:12

本文主要是介绍python使用多进程加快处理数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近需要用python循环遍历xlsx文件,但总感觉特慢,于是记录一下使用多进程让cpu性能拉满,加快速度。

python使用多进程加快处理数据

  • 1.原始代码
  • 2.使用多进程改写代码

1.原始代码

下面展示 原始代码

这个举例代码的是用来循环遍历我文件夹下的每一个xlsx文件,
并读取时间以及对应的电流信息,
并将label为0以及为1的时间和对应的电流分别读取保存。
'''这个函数文件是将把时间加进去,将时间和电流转换为二维矩阵,构建:时域特征'''
import osimport pandas as pd
import numpy as npfile_dir = r'D:\交流并联(正常=0有弧=1)'
file_dir_list = os.listdir(file_dir)
final_data_0 = []  # 初始化一个空列表用于存储每次循环得到的data_0
final_data_1 = []  #
# 循环遍历xlsx文件
for xlsx in file_dir_list:curr_xlsx = os.path.join(file_dir, xlsx)# 读取xlsx文件df = pd.read_excel(curr_xlsx, engine='openpyxl')# 读取xlsx文件列数据time_data = np.array(df['TIME'])current_data = np.array(df['Current'])label_data = np.array(df['Label'])#将label中为0对应的时间-电流(时域)数据筛选出来time_0 = time_data[label_data == 0]current_0 = current_data[label_data == 0]#将label中为1对应的时间-电流(时域)数据筛选出来time_1 = time_data[label_data == 1]current_1 = current_data[label_data == 1]data_0 = np.concatenate((np.expand_dims(time_0, 1), np.expand_dims(current_0, 1)), axis=1)data_1 = np.concatenate((np.expand_dims(time_1, 1), np.expand_dims(current_1, 1)), axis=1)final_data_0.append(data_0)  # 将当前循环得到的data_0添加到final_data_0列表final_data_1.append(data_1)print(data_0.shape)print("H_W_0 is :{}".format(np.sqrt(data_0.shape[0])))print(data_1.shape)print("H_W_1 is :{}".format(np.sqrt(data_1.shape[0])))print('-----------')
# 将所有循环得到的data_0和data_1按照第一个维度进行拼接
final_data_0 = np.concatenate(final_data_0, axis=0)
final_data_1 = np.concatenate(final_data_1, axis=0)

2.使用多进程改写代码

下面展示 改写使用多进程的代码

其实主要还是这个代码:
# 创建进程池with Pool(processes=os.cpu_count()) as pool:results = pool.map(process_file, file_dir_list)
流程也就是:
(1)将原始代码封装成函数(不要用循环)
(2)pool.map(process_file, file_dir_list)第一参函数就是(1)封装好的函数,
然后第二个参数就是原始代码中循环的每个xlsx文件名。
记住这个流程,你就学会多进程的使用啦!
import os
import pandas as pd
import numpy as np
from multiprocessing import Pool# 定义处理每个文件的函数
def process_file(xlsx):file_dir = r'D:\交流并联(正常=0有弧=1)'curr_xlsx = os.path.join(file_dir, xlsx)df = pd.read_excel(curr_xlsx, engine='openpyxl')time_data = np.array(df['TIME'])current_data = np.array(df['Current'])label_data = np.array(df['Label'])time_0 = time_data[label_data == 0]current_0 = current_data[label_data == 0]data_0 = np.concatenate((np.expand_dims(time_0, 1), np.expand_dims(current_0, 1)), axis=1)time_1 = time_data[label_data == 1]current_1 = current_data[label_data == 1]data_1 = np.concatenate((np.expand_dims(time_1, 1), np.expand_dims(current_1, 1)), axis=1)return (data_0, data_1)# 使用多进程读取和处理文件
def main():file_dir = r'D:\交流并联(正常=0有弧=1)'file_dir_list = os.listdir(file_dir)# 创建进程池with Pool(processes=os.cpu_count()) as pool:results = pool.map(process_file, file_dir_list)final_data_0 = np.concatenate([result[0] for result in results], axis=0)final_data_1 = np.concatenate([result[1] for result in results], axis=0)print('final_data_0 shape:', final_data_0.shape)print('final_data_1 shape:', final_data_1.shape)if __name__ == '__main__':main()

这篇关于python使用多进程加快处理数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077324

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Python中Tkinter GUI编程详细教程

《Python中TkinterGUI编程详细教程》Tkinter作为Python编程语言中构建GUI的一个重要组件,其教程对于任何希望将Python应用到实际编程中的开发者来说都是宝贵的资源,这篇文... 目录前言1. Tkinter 简介2. 第一个 Tkinter 程序3. 窗口和基础组件3.1 创建窗

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

Spring Boot 处理带文件表单的方式汇总

《SpringBoot处理带文件表单的方式汇总》本文详细介绍了六种处理文件上传的方式,包括@RequestParam、@RequestPart、@ModelAttribute、@ModelAttr... 目录方式 1:@RequestParam接收文件后端代码前端代码特点方式 2:@RequestPart接

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC