曲线平滑处理代码学习

2024-06-20 05:20

本文主要是介绍曲线平滑处理代码学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RenderOptions.ProcessRenderMode = RenderMode.SoftwareOnly;
  • 这行代码设置了渲染模式为软件渲染模式。在 WPF(Windows Presentation Foundation)中,渲染模式决定了图形和界面元素如何在屏幕上绘制和呈现。软件渲染模式通常用于在不支持硬件加速的环境中进行图形绘制,或者在需要更高兼容性和稳定性的场景下使用。
InitializeComponent();
  • 这是一个 WPF 中常见的语句,用于初始化当前窗体或用户控件的组件。它通常在窗体或用户控件的构造函数中调用,用来加载 XAML 中定义的界面元素和布局。
Random random = new Random();
double randomValue = random.NextDouble();

解释:

  • Random random = new Random();: 创建一个 Random 类的实例对象 randomRandom 类是用于生成伪随机数序列的类。
  • double randomValue = random.NextDouble();: 调用 random 对象的 NextDouble() 方法,生成一个双精度浮点数。这个浮点数的范围是大于等于 0.0 且小于 1.0。
int yValue =(int)(Math.Sin(dou) * 200 + noise + 400); // 设置峰值并加上偏移量

Math.Sin(dou) 是一个数学函数调用,用于计算给定角度(以弧度表示)的正弦值。

解释:

  • Math.Sin() 是 C# 中的数学库 System.Math 提供的静态方法之一,用于计算角度的正弦值。弧度(radians)是角度的单位,与角度(degrees)相比,弧度更常用于数学计算和物理学中,因为它与圆周率(π)的关系更加直接。在代码中,Math.Sin(dou) 中的 dou 变量可能表示角度的弧度值,函数返回该角度的正弦值,即一个介于 -1 到 1 之间的双精度浮点数。
  • private const int ARRAY_XB = 2047;

    • 这是一个常量声明,ARRAY_XB 被设定为 2047。常量在程序执行期间不会改变其值。该常量通常用于定义数组的大小或者其他需要固定值的场合。
  • private ushort[] u16_Rfx = new ushort[ARRAY_XB];

    • 这行代码声明了一个名为 u16_Rfx 的数组,其元素类型为 ushort(16 位无符号整数)。
    • 数组的大小由常量 ARRAY_XB 指定,因此 u16_Rfx 数组有 2047 个元素。
    • 用途可能是存储某种反射数据或者其他需要使用 ushort 类型的数据集合。
  • private int[] s32_Loc = new int[ARRAY_XB];

    • 这行代码声明了一个名为 s32_Loc 的数组,其元素类型为 int(32 位有符号整数)。
    • 数组的大小同样由常量 ARRAY_XB 指定,即有 2047 个元素。
    • 可能用于存储位置信息或者索引相关的数据。
  • private uint mu32_RfxSumHalfs = 0;

    • 这行代码声明了一个名为 mu32_RfxSumHalfs 的变量,其类型为 uint(32 位无符号整数)。
    • 初始化为 0,用于存储某种累加或者求和结果。
  • private ushort mu16_RfxAvg05s = 0;

    • 这行代码声明了一个名为 mu16_RfxAvg05s 的变量,其类型为 ushort(16 位无符号整数)。
    • 初始化为 0,可能用于存储某种平均值或者处理后的数据。
  • private uint mu32_RfxSumOne_s = 0;

    • 这行代码声明了一个名为 mu32_RfxSumOne_s 的变量,其类型为 uint(32 位无符号整数)。
    • 初始化为 0,可能用于存储另一种累加或者求和结果。
  • private ushort mu16_RfxAvg10s = 0;

    • 这行代码声明了一个名为 mu16_RfxAvg10s 的变量,其类型为 ushort(16 位无符号整数)。
    • 初始化为 0,可能用于存储另一种平均值或者处理后的数据。
  • private ushort[] mu16_SmothRfx = new ushort[ARRAY_XB];

    • 这行代码声明了一个名为 mu16_SmothRfx 的数组,其元素类型为 ushort(16 位无符号整数)。
    • 数组的大小同样由常量 ARRAY_XB 指定,即有 2047 个元素。
    • 用于存储经过某种平滑处理后的数据。

这篇关于曲线平滑处理代码学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077220

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言