通信系统的最佳线性均衡器(1)---维纳滤波线性均衡

2024-06-20 04:44

本文主要是介绍通信系统的最佳线性均衡器(1)---维纳滤波线性均衡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对通信等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记

          通信领域笔记(4)---《通信系统的最佳线性均衡器(1)---维纳滤波线性均衡》

通信系统的最佳线性均衡器(1)---维纳滤波线性均衡

目录

1. 背景分析

2 理论分析推导      

3 MATLAB 仿真 FIR 最佳线性滤波器

4 总结分析​​​​​​​


1. 背景分析

        在通信系统中,发射机发送的信号通过信道传输到接收机,传输信道有不同 的媒体,主要分成有线和无线两类。以无线为例,发射信号通过无线信道传播, 经过多径到达接收机而被接收,这些多径是由于信道中的信号经反射、折射和衍射形成的。多径传播产生的接收信号是由多个延迟衰落的发射信号叠加而成的。因此接收机接收到的信号中存在着串扰和畸变,直接进行检测会产生较大的误码。一种改善信号检测性能的装置是信道均衡器,它的目标是补偿信道造成的串扰和畸变。通信系统的最佳线性均衡器通常是指使用线性滤波器来抵消信道引起的失真和干扰,以尽可能恢复发送端发送的信号。最佳的线性均衡器设计需要考虑到信道的特性以及发送信号的统计特性。一种常见的实现方式是使用维纳-霍夫等式,它可以得到一个最小均方误差的解。另外,常用的线性均衡器包括莱斯滤波器、线性均衡器和决策反馈均衡器等。

        维纳滤波器是一种最佳线性无失真滤波器,它的设计考虑了信道的特性和发送信号的统计特性,以最小化输出信号与原始信号之间的均方误差。因此,维纳滤波器可以用作通信系统中的线性均衡器,帮助抵消信道引起的失真和干扰。考虑一个简化的线性自适应均衡器的原理性实验框图如图 1 所示。随机数据产生器产生双极性的随机序列𝑠(𝑛),它随机地取±1。随机信号通过一个信道传输,信道性质可由一个三系数 FIR 滤波器近似,滤波器系数分别是 0.30.90.3。在信道输出端加入方差为𝜎 2的高斯白噪声。设计一个有 11 个权系数的 FIR 结构的维纳滤波器作为本问题的均衡器,为使均衡器的权系数接近对称,令均衡器的期望响应为𝑠(𝑛 − 7)。在几个选定的信噪比下,进行实验。


2 理论分析推导      

        在维纳滤波器设计中,最常用的是 FIR 维纳滤波器。这是因为 FIR 滤波器具有稳定性和实现上的优势,其设计更为直观和容易控制。此外,FIR 滤波器可以 较为灵活地满足各种滤波要求,并且不会引入稳定性和因果性方面的问题。相比 之下,因果 IIR 和非因果 IIR 维纳滤波器在实际设计中使用较少,因为其设计和实现更为复杂,对系统稳定性和实时性要求较高。此处以 FIR 维纳滤波器为例进 行分析。 已知𝒚(𝒏)是期望的输出信号,𝒙(𝒏)是输入信号,𝒆(𝒏)是误差信号。𝒚(𝒏)𝒙(𝒏) 是均值为 0 的平稳的离散时间信号,二阶矩已知。

2.1 维纳-霍夫方程(Wiener-Hopf 方程)


3 MATLAB 仿真 FIR 最佳线性滤波器

        首先生成双极性随机序列𝑠(𝑛),通过模拟信道特性的三系数 FIR 滤波器,并添加信噪比为 20dB 的高斯白噪声,得到维纳滤波器的输入信号序列𝑥(𝑛),期望 信号为原始双极性随机序列𝑠(𝑛)

clc
clear all
close all
% 生成双极性随机序列s(n)
N = 500;
s = sign(randn(1, N));% 模拟信号通过信道传输
h = [0.3, 0.9, 0.3]; % FIR滤波器系数
x = filter(h, 1, s); % 信号通过FIR滤波器
x = x(2:end);
SNR_dB = 10; % 信噪比为10dB
r = awgn(x,SNR_dB,'measured');%信号加入高斯白噪声信号
figure
plot(s(1:200));
hold on
plot(r(1:200));
legend('双极性随机序列s(n)','加噪后信号x(n)');

        求输入序列𝑥(𝑛) 的自相关函数R 𝑥𝑥 (𝑛) 以及期望序列与输入序列的互相关函数 R𝑦𝑥(𝑛) 根据维纳 - 霍夫方程,可以求得维纳滤波器系数。此处选择设计 11 阶( 12 个参数)的维纳滤波器。
%%FIR最佳线性滤波器
Rx = xcorr(r,10);%输入自相关
Rxyd = xcorr(r,s,10);%输入与期望输出的互相关
R0=[Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19) Rx(20) Rx(21);Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19) Rx(20);Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19);Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18);Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17);Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16);Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15);Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14);Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13);Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12);Rx(20) Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11);Rx(21) Rx(20) Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10);];
R1=[Rxyd(10) Rxyd(11) Rxyd(12) Rxyd(13) Rxyd(14) Rxyd(15) Rxyd(16) Rxyd(17) Rxyd(18) Rxyd(19) Rxyd(20) Rxyd(21)]';
h = (R0\R1);%滤波器系数
out_signal = filter(h, 1, r);%输出信号

        由上图可知,该维纳滤波器基本恢复出的信号与原始双极性随机序列𝑠(𝑛) 仍 有一定的差距,误差值未收敛。但是从趋势上来看,已基本符合双极性随机序列𝑠(𝑛) 的跳变趋势。
        考虑到加噪后的信号仍存在一定的跳变趋势,故降低信噪比至 10dB 再次进行实验。

        由图知,减小信噪比后,加噪后信号波动变大,滤波器误差随着信噪比的减小而增大了,效果并不出众。由于 FIR 最佳线性滤波器计算得到的滤波器参数只是使用了 12 个输出序列进行运算,并没有进行迭代过程,故计算出的滤波器参数并不是最优的,因此考虑使用自适应滤波器的方法来滤除高斯噪声。(此处只是提前使用自适应算法,改进滤波效果,具体自适应算法的实验在 3.2

        在 20dB 的信噪比下,利用 LMS 自适应滤波器进行实验,

        由上图可知,LMS 自适应算法的误差曲线处于收敛趋势,且进行到大约 250 次迭代时,误差曲线基本收敛。与 FIR 最佳线性滤波器相比,均衡后的信号序列更加贴近期望信号,效果更好。


4 总结分析

        维纳滤波器与常规滤波器相比,在抑制信道失真和噪声方面表现出良好的效果。但在动态信道或噪声较大的通信系统,维纳滤波器的效果会减弱。在算法设计上,需要注意信号时刻对齐的问题。


     文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者私信联系作者。

这篇关于通信系统的最佳线性均衡器(1)---维纳滤波线性均衡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077135

相关文章

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文