通信系统的最佳线性均衡器(1)---维纳滤波线性均衡

2024-06-20 04:44

本文主要是介绍通信系统的最佳线性均衡器(1)---维纳滤波线性均衡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对通信等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记

          通信领域笔记(4)---《通信系统的最佳线性均衡器(1)---维纳滤波线性均衡》

通信系统的最佳线性均衡器(1)---维纳滤波线性均衡

目录

1. 背景分析

2 理论分析推导      

3 MATLAB 仿真 FIR 最佳线性滤波器

4 总结分析​​​​​​​


1. 背景分析

        在通信系统中,发射机发送的信号通过信道传输到接收机,传输信道有不同 的媒体,主要分成有线和无线两类。以无线为例,发射信号通过无线信道传播, 经过多径到达接收机而被接收,这些多径是由于信道中的信号经反射、折射和衍射形成的。多径传播产生的接收信号是由多个延迟衰落的发射信号叠加而成的。因此接收机接收到的信号中存在着串扰和畸变,直接进行检测会产生较大的误码。一种改善信号检测性能的装置是信道均衡器,它的目标是补偿信道造成的串扰和畸变。通信系统的最佳线性均衡器通常是指使用线性滤波器来抵消信道引起的失真和干扰,以尽可能恢复发送端发送的信号。最佳的线性均衡器设计需要考虑到信道的特性以及发送信号的统计特性。一种常见的实现方式是使用维纳-霍夫等式,它可以得到一个最小均方误差的解。另外,常用的线性均衡器包括莱斯滤波器、线性均衡器和决策反馈均衡器等。

        维纳滤波器是一种最佳线性无失真滤波器,它的设计考虑了信道的特性和发送信号的统计特性,以最小化输出信号与原始信号之间的均方误差。因此,维纳滤波器可以用作通信系统中的线性均衡器,帮助抵消信道引起的失真和干扰。考虑一个简化的线性自适应均衡器的原理性实验框图如图 1 所示。随机数据产生器产生双极性的随机序列𝑠(𝑛),它随机地取±1。随机信号通过一个信道传输,信道性质可由一个三系数 FIR 滤波器近似,滤波器系数分别是 0.30.90.3。在信道输出端加入方差为𝜎 2的高斯白噪声。设计一个有 11 个权系数的 FIR 结构的维纳滤波器作为本问题的均衡器,为使均衡器的权系数接近对称,令均衡器的期望响应为𝑠(𝑛 − 7)。在几个选定的信噪比下,进行实验。


2 理论分析推导      

        在维纳滤波器设计中,最常用的是 FIR 维纳滤波器。这是因为 FIR 滤波器具有稳定性和实现上的优势,其设计更为直观和容易控制。此外,FIR 滤波器可以 较为灵活地满足各种滤波要求,并且不会引入稳定性和因果性方面的问题。相比 之下,因果 IIR 和非因果 IIR 维纳滤波器在实际设计中使用较少,因为其设计和实现更为复杂,对系统稳定性和实时性要求较高。此处以 FIR 维纳滤波器为例进 行分析。 已知𝒚(𝒏)是期望的输出信号,𝒙(𝒏)是输入信号,𝒆(𝒏)是误差信号。𝒚(𝒏)𝒙(𝒏) 是均值为 0 的平稳的离散时间信号,二阶矩已知。

2.1 维纳-霍夫方程(Wiener-Hopf 方程)


3 MATLAB 仿真 FIR 最佳线性滤波器

        首先生成双极性随机序列𝑠(𝑛),通过模拟信道特性的三系数 FIR 滤波器,并添加信噪比为 20dB 的高斯白噪声,得到维纳滤波器的输入信号序列𝑥(𝑛),期望 信号为原始双极性随机序列𝑠(𝑛)

clc
clear all
close all
% 生成双极性随机序列s(n)
N = 500;
s = sign(randn(1, N));% 模拟信号通过信道传输
h = [0.3, 0.9, 0.3]; % FIR滤波器系数
x = filter(h, 1, s); % 信号通过FIR滤波器
x = x(2:end);
SNR_dB = 10; % 信噪比为10dB
r = awgn(x,SNR_dB,'measured');%信号加入高斯白噪声信号
figure
plot(s(1:200));
hold on
plot(r(1:200));
legend('双极性随机序列s(n)','加噪后信号x(n)');

        求输入序列𝑥(𝑛) 的自相关函数R 𝑥𝑥 (𝑛) 以及期望序列与输入序列的互相关函数 R𝑦𝑥(𝑛) 根据维纳 - 霍夫方程,可以求得维纳滤波器系数。此处选择设计 11 阶( 12 个参数)的维纳滤波器。
%%FIR最佳线性滤波器
Rx = xcorr(r,10);%输入自相关
Rxyd = xcorr(r,s,10);%输入与期望输出的互相关
R0=[Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19) Rx(20) Rx(21);Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19) Rx(20);Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19);Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18);Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17);Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16);Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15);Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14);Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13);Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12);Rx(20) Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11);Rx(21) Rx(20) Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10);];
R1=[Rxyd(10) Rxyd(11) Rxyd(12) Rxyd(13) Rxyd(14) Rxyd(15) Rxyd(16) Rxyd(17) Rxyd(18) Rxyd(19) Rxyd(20) Rxyd(21)]';
h = (R0\R1);%滤波器系数
out_signal = filter(h, 1, r);%输出信号

        由上图可知,该维纳滤波器基本恢复出的信号与原始双极性随机序列𝑠(𝑛) 仍 有一定的差距,误差值未收敛。但是从趋势上来看,已基本符合双极性随机序列𝑠(𝑛) 的跳变趋势。
        考虑到加噪后的信号仍存在一定的跳变趋势,故降低信噪比至 10dB 再次进行实验。

        由图知,减小信噪比后,加噪后信号波动变大,滤波器误差随着信噪比的减小而增大了,效果并不出众。由于 FIR 最佳线性滤波器计算得到的滤波器参数只是使用了 12 个输出序列进行运算,并没有进行迭代过程,故计算出的滤波器参数并不是最优的,因此考虑使用自适应滤波器的方法来滤除高斯噪声。(此处只是提前使用自适应算法,改进滤波效果,具体自适应算法的实验在 3.2

        在 20dB 的信噪比下,利用 LMS 自适应滤波器进行实验,

        由上图可知,LMS 自适应算法的误差曲线处于收敛趋势,且进行到大约 250 次迭代时,误差曲线基本收敛。与 FIR 最佳线性滤波器相比,均衡后的信号序列更加贴近期望信号,效果更好。


4 总结分析

        维纳滤波器与常规滤波器相比,在抑制信道失真和噪声方面表现出良好的效果。但在动态信道或噪声较大的通信系统,维纳滤波器的效果会减弱。在算法设计上,需要注意信号时刻对齐的问题。


     文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者私信联系作者。

这篇关于通信系统的最佳线性均衡器(1)---维纳滤波线性均衡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077135

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节