阿里云PAI大模型评测最佳实践

2024-06-19 23:28

本文主要是介绍阿里云PAI大模型评测最佳实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:施晨、之用、南茵、求伯、一耘、临在

背景信息

内容简介

在大模型时代,随着模型效果的显著提升,模型评测的重要性日益凸显。科学、高效的模型评测,不仅能帮助开发者有效地衡量和对比不同模型的性能,更能指导他们进行精准地模型选择和优化,加速AI创新和应用落地。因此,建立一套平台化的大模型评测最佳实践愈发重要。本文为PAI大模型评测最佳实践,旨在指引AI开发人员使用PAI平台进行大模型评测。借助本最佳实践,您可以轻松构建出既能反映模型真实性能,又能满足行业特定需求的评测过程,助力您在人工智能赛道上取得更好的成绩。最佳实践包括如下内容:

  • 如何准备和选择评测数据集

  • 如何选择适合业务的开源或微调后模型

  • 如何创建评测任务并选择合适的评价指标

  • 如何在单任务或多任务场景下解读评测结果

平台亮点

PAI大模型评测平台,适合您针对不同的大模型评测场景,进行模型效果对比。例如:

  • 不同基础模型对比:Qwen2-7B-Instruct vs. Baichuan2-7B-Chat

  • 同一模型不同微调版本对比:Qwen2-7B-Instruct 在私有领域数据下训练不同 epoch 版本效果对比

  • 同一模型不同量化版本对比:Qwen2-7B-Instruct-GPTQ-Int4 vs. Qwen2-7B-Instruct-GPTQ-Int8

考虑到不同开发群体的特定需求,我们将以企业开发者算法研究人员两个典型群体为例,探讨如何结合常用的公开数据集(如MMLU、C-Eval等)与企业的自定义数据集,实现更全面准确并具有针对性的模型评测,查找适合您业务需求的大模型。最佳实践的亮点如下:

  • 端到端完整评测链路,无需代码开发,支持主流开源大模型,与大模型微调后的一键评测;

  • 支持用户自定义数据集上传,内置10+通用NLP评测指标,一览式结果展示,无需再开发评测脚本;

  • 支持多个领域的常用公开数据集评测,完整还原官方评测方法,雷达图全景展示,省去逐个下载评测集和熟悉评测流程的繁杂;

  • 支持多模型多任务同时评测,评测结果图表式对比展示,辅以单条评测结果详情,方便全方位比较分析;

  • 评测过程公开透明,结果可复现。评测代码开源在与ModelScope共建的开源代码库eval-scope中,方便细节查看与复现:GitHub - modelscope/eval-scope: A streamlined and customizable framework for efficient large model evaluation and performance benchmarking

前提条件

  • 已开通PAI并创建了默认工作空间。具体操作,请参见开通PAI并创建默认工作空间。

  • 如果选择自定义数据集评测,需要创建OSS Bucket存储空间,用来存放数据集文件。具体操作,请参见控制台创建存储空间。

使用费用

  • PAI大模型评测依托于PAI-快速开始产品。快速开始是PAI产品组件,集成了众多AI开源社区中优质的预训练模型,并且基于开源模型支持零代码实现从训练到部署再到推理的全部过程,给您带来更快、更高效、更便捷的AI应用体验。

  • 快速开始本身不收费,但使用快速开始进行模型评测时,可能产生DLC评测任务费用,计费详情请参见DLC计费说明。

  • 如果选择自定义数据集评测,使用OSS存储,会产生相关费用,计费详情请参见OSS计费概述。

场景一:面向企业开发者的自定义数据集评测

企业通常会积累丰富的私有领域数据。如何充分利用好这部分数据,是企业使用大模型进行算法优化的关键。因此,企业开发者在评测开源微调后的大模型时,往往会基于私有领域下积累的自定义数据集,以便于更好地了解大模型在私有领域的效果。对于自定义数据集评测,我们使用NLP领域标准的文本匹配方式,计算模型输出结果和真实结果的匹配度,值越大,模型越好。使用该评测方式,基于自己场景的独特数据,可以评测所选模型是否适合自己的场景。以下将重点展示使用过程中的一些关键点,更详细的操作细节,请参见模型评测产品文档。

1. 准备自定义评测集

1.1. 自定义评测集格式
  • 基于自定义数据集进行评测,需要提供JSONL格式的评测集文件

  • 文件格式:使用question标识问题列,answer标识答案列。

  • 文件示例:📎llmuses_general_qa_test.jsonl

[{"question": "中国发明了造纸术,是否正确?", "answer": "正确"}][{"question": "中国发明了火药,是否正确?", "answer": "正确"}]

  • 符合格式要求的评测集,可自行上传至OSS,并创建自定义数据集,详情参见上传OSS文件和创建及管理数据集。

1.2. 创建自定义评测集
  1. 登录PAI控制台。

  2. 在左侧导航栏选择AI资产管理>数据集,进入数据集页面

  3. 单击创建数据集

  4. 填写创建数据集相关表单,从OSS中选择您的自定义评测集文件

2. 选择适合业务的模型

2.1. 查找开源模型
  1. 在PAI控制台左侧导航栏选择快速开始,进入快速开始页面

  2. 单击快速开始提供的模型分类信息,直接进入到模型列表中,根据模型描述信息进行查看。

    3.单击进入模型详情页后,对于可评测的模型,会展示评测按钮。

    4.支持模型类型:当前模型评测支持HuggingFace所有AutoModelForCausalLM类型的模型

2.2. 使用微调后的模型
  1. 使用快速开始进行模型微调,详细步骤请参见模型部署及训练

  2. 微调完成后,在快速开始>任务管理>训练任务中,单击训练好的任务名称,进入任务详情页后,对于可评测的模型,右上角会展示评测按钮。

3. 创建评测任务

  1. 在模型详情页右上角单击评测,创建评测任务

  2. 新建评测任务页面,配置以下关键参数。

  3. 任务创建成功后,将自动分配资源,并开始运行。

  4. 运行完成后,任务状态显示为已成功。

4. 查看评测结果

4.1. 评测任务列表
  1. 快速开始页面,单击搜索框左侧的任务管理

  2. 任务管理页面,选择模型评测标签页。

4.2. 单任务结果
  1. 模型评测列表页,单击评测任务的查看报告选项,即可进入评测任务详情页

  2. 评测报告如下图所示,选择自定义数据集评测结果,将在雷达图展示该模型在ROUGE和BLEU系列指标上的得分。此外还会展示评测文件每条数据的评测详情。

自定义数据集的默认评测指标包括:rouge-1-f,rouge-1-p,rouge-1-r,rouge-2-f,rouge-2-p,rouge-2-r,rouge-l-f,rouge-l-p,rouge-l-r,bleu-1,bleu-2,bleu-3,bleu-4。

  • rouge-n类指标计算N-gram(连续的N个词)的重叠度,其中rouge-1和rouge-2是最常用的,分别对应unigram和bigram,rouge-l 指标基于最长公共子序列(LCS)。

  • bleu (Bilingual Evaluation Understudy) 是另一种流行的评估机器翻译质量的指标,它通过测量机器翻译输出与一组参考翻译之间的N-gram重叠度来评分。其中bleu-n指标计算n-gram的匹配度。

        3.最终评测结果会保存到您指定的OSS路径中

4.3. 多任务对比
  1. 当需要对比多个模型的评测结果时,可以将它们聚合在一个页面上展示,以便于比较效果。

  2. 具体操作为在模型评测任务列表页,左侧选择想要对比的模型评测任务,右上角单击对比,进入对比页面。

  3. 自定义数据集评测对比结果

场景二:面向算法研究人员的公开数据集评测

算法研究通常建立在公开数据集上。研究人员在选择开源模型,或对模型进行微调后,都会参考其在权威公开数据集上的评测效果。然而,大模型时代的公开数据集种类繁多,研究人员需要花费大量时间调研选择适合自己领域的公开数据集,并熟悉每个数据集的评测流程。为方便算法研究人员,PAI接入了多个领域的公开数据集,并完整还原了各个数据集官方指定的评测metrics,以便获取最准确的评测效果反馈,助力更高效的大模型研究。在公开数据集评测中,我们通过对开源的评测数据集按领域分类,对大模型进行综合能力评估,例如数学能力、知识能力、推理能力等,值越大,模型越好,这种评测方式也是大模型领域最常见的评测方式。以下将重点展示使用过程中的一些关键点,更详细的操作细节,请参见模型评测产品文档。

1. 支持的公开数据集

  • 目前PAI维护的公开数据集包括MMLU、TriviaQA、HellaSwag、GSM8K、C-Eval、CMMLU、TruthfulQA,其他公开数据集陆续接入中。

2. 选择适合的模型

2.1. 查找开源模型
  1. 在PAI控制台左侧导航栏选择快速开始,进入快速开始页面

  2. 单击快速开始提供的模型分类信息,直接进入到模型列表中,根据模型描述信息进行查看。

        3.单击进入模型详情页后,对于可评测的模型,会展示评测按钮。

        4.支持模型类型:当前模型评测支持HuggingFace所有AutoModelForCausalLM类型的模型

2.2. 使用微调后的模型
  1. 使用快速开始进行模型微调,详细步骤请参见模型部署及训练

  2. 微调完成后,在快速开始>任务管理>训练任务中,单击训练好的任务名称,进入任务详情页后,对于可评测的模型,右上角会展示评测按钮。

3. 创建评测任务

  1. 在模型详情页右上角单击评测,创建评测任务

  2. 新建评测任务页面,配置以下关键参数。本文以MMLU数据集为例。

  3. 任务创建成功后,将自动分配资源,并开始运行。

  4. 运行完成后,任务状态显示为已成功。

4. 查看评测结果

4.1. 评测任务列表
  1. 快速开始页面,单击搜索框左侧的任务管理

  2. 任务管理页面,选择模型评测标签页。

4.2. 单任务结果
  1. 模型评测列表页,单击评测任务的查看报告选项,即可进入评测任务详情页

  2. 评测报告如下图所示,选择公开数据集评测结果,将在雷达图展示该模型在公开数据集上的得分。

  • 左侧图片展示了模型在不同领域的得分情况。每个领域可能会有多个与之相关的数据集,对属于同一领域的数据集,我们会把模型在这些数据集上的评测得分取均值,作为领域得分。

  • 右侧图片展示模型在各个公开数据集的得分情况。每个公开数据集的评测范围详见该数据集官方介绍。

        3.最终评测结果会保存到您指定的OSS路径中

4.3. 多任务对比
  1. 当需要对比多个模型的评测结果时,可以将它们在聚合在一个页面上展示,以便于比较效果。

  2. 具体操作为在模型评测任务列表页,左侧选择想要对比的模型评测任务,右上角单击对比,进入对比页面。

  3. 公开数据集评测对比结果

这篇关于阿里云PAI大模型评测最佳实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076450

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee