阿里云PAI大模型评测最佳实践

2024-06-19 23:28

本文主要是介绍阿里云PAI大模型评测最佳实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:施晨、之用、南茵、求伯、一耘、临在

背景信息

内容简介

在大模型时代,随着模型效果的显著提升,模型评测的重要性日益凸显。科学、高效的模型评测,不仅能帮助开发者有效地衡量和对比不同模型的性能,更能指导他们进行精准地模型选择和优化,加速AI创新和应用落地。因此,建立一套平台化的大模型评测最佳实践愈发重要。本文为PAI大模型评测最佳实践,旨在指引AI开发人员使用PAI平台进行大模型评测。借助本最佳实践,您可以轻松构建出既能反映模型真实性能,又能满足行业特定需求的评测过程,助力您在人工智能赛道上取得更好的成绩。最佳实践包括如下内容:

  • 如何准备和选择评测数据集

  • 如何选择适合业务的开源或微调后模型

  • 如何创建评测任务并选择合适的评价指标

  • 如何在单任务或多任务场景下解读评测结果

平台亮点

PAI大模型评测平台,适合您针对不同的大模型评测场景,进行模型效果对比。例如:

  • 不同基础模型对比:Qwen2-7B-Instruct vs. Baichuan2-7B-Chat

  • 同一模型不同微调版本对比:Qwen2-7B-Instruct 在私有领域数据下训练不同 epoch 版本效果对比

  • 同一模型不同量化版本对比:Qwen2-7B-Instruct-GPTQ-Int4 vs. Qwen2-7B-Instruct-GPTQ-Int8

考虑到不同开发群体的特定需求,我们将以企业开发者算法研究人员两个典型群体为例,探讨如何结合常用的公开数据集(如MMLU、C-Eval等)与企业的自定义数据集,实现更全面准确并具有针对性的模型评测,查找适合您业务需求的大模型。最佳实践的亮点如下:

  • 端到端完整评测链路,无需代码开发,支持主流开源大模型,与大模型微调后的一键评测;

  • 支持用户自定义数据集上传,内置10+通用NLP评测指标,一览式结果展示,无需再开发评测脚本;

  • 支持多个领域的常用公开数据集评测,完整还原官方评测方法,雷达图全景展示,省去逐个下载评测集和熟悉评测流程的繁杂;

  • 支持多模型多任务同时评测,评测结果图表式对比展示,辅以单条评测结果详情,方便全方位比较分析;

  • 评测过程公开透明,结果可复现。评测代码开源在与ModelScope共建的开源代码库eval-scope中,方便细节查看与复现:GitHub - modelscope/eval-scope: A streamlined and customizable framework for efficient large model evaluation and performance benchmarking

前提条件

  • 已开通PAI并创建了默认工作空间。具体操作,请参见开通PAI并创建默认工作空间。

  • 如果选择自定义数据集评测,需要创建OSS Bucket存储空间,用来存放数据集文件。具体操作,请参见控制台创建存储空间。

使用费用

  • PAI大模型评测依托于PAI-快速开始产品。快速开始是PAI产品组件,集成了众多AI开源社区中优质的预训练模型,并且基于开源模型支持零代码实现从训练到部署再到推理的全部过程,给您带来更快、更高效、更便捷的AI应用体验。

  • 快速开始本身不收费,但使用快速开始进行模型评测时,可能产生DLC评测任务费用,计费详情请参见DLC计费说明。

  • 如果选择自定义数据集评测,使用OSS存储,会产生相关费用,计费详情请参见OSS计费概述。

场景一:面向企业开发者的自定义数据集评测

企业通常会积累丰富的私有领域数据。如何充分利用好这部分数据,是企业使用大模型进行算法优化的关键。因此,企业开发者在评测开源微调后的大模型时,往往会基于私有领域下积累的自定义数据集,以便于更好地了解大模型在私有领域的效果。对于自定义数据集评测,我们使用NLP领域标准的文本匹配方式,计算模型输出结果和真实结果的匹配度,值越大,模型越好。使用该评测方式,基于自己场景的独特数据,可以评测所选模型是否适合自己的场景。以下将重点展示使用过程中的一些关键点,更详细的操作细节,请参见模型评测产品文档。

1. 准备自定义评测集

1.1. 自定义评测集格式
  • 基于自定义数据集进行评测,需要提供JSONL格式的评测集文件

  • 文件格式:使用question标识问题列,answer标识答案列。

  • 文件示例:📎llmuses_general_qa_test.jsonl

[{"question": "中国发明了造纸术,是否正确?", "answer": "正确"}][{"question": "中国发明了火药,是否正确?", "answer": "正确"}]

  • 符合格式要求的评测集,可自行上传至OSS,并创建自定义数据集,详情参见上传OSS文件和创建及管理数据集。

1.2. 创建自定义评测集
  1. 登录PAI控制台。

  2. 在左侧导航栏选择AI资产管理>数据集,进入数据集页面

  3. 单击创建数据集

  4. 填写创建数据集相关表单,从OSS中选择您的自定义评测集文件

2. 选择适合业务的模型

2.1. 查找开源模型
  1. 在PAI控制台左侧导航栏选择快速开始,进入快速开始页面

  2. 单击快速开始提供的模型分类信息,直接进入到模型列表中,根据模型描述信息进行查看。

    3.单击进入模型详情页后,对于可评测的模型,会展示评测按钮。

    4.支持模型类型:当前模型评测支持HuggingFace所有AutoModelForCausalLM类型的模型

2.2. 使用微调后的模型
  1. 使用快速开始进行模型微调,详细步骤请参见模型部署及训练

  2. 微调完成后,在快速开始>任务管理>训练任务中,单击训练好的任务名称,进入任务详情页后,对于可评测的模型,右上角会展示评测按钮。

3. 创建评测任务

  1. 在模型详情页右上角单击评测,创建评测任务

  2. 新建评测任务页面,配置以下关键参数。

  3. 任务创建成功后,将自动分配资源,并开始运行。

  4. 运行完成后,任务状态显示为已成功。

4. 查看评测结果

4.1. 评测任务列表
  1. 快速开始页面,单击搜索框左侧的任务管理

  2. 任务管理页面,选择模型评测标签页。

4.2. 单任务结果
  1. 模型评测列表页,单击评测任务的查看报告选项,即可进入评测任务详情页

  2. 评测报告如下图所示,选择自定义数据集评测结果,将在雷达图展示该模型在ROUGE和BLEU系列指标上的得分。此外还会展示评测文件每条数据的评测详情。

自定义数据集的默认评测指标包括:rouge-1-f,rouge-1-p,rouge-1-r,rouge-2-f,rouge-2-p,rouge-2-r,rouge-l-f,rouge-l-p,rouge-l-r,bleu-1,bleu-2,bleu-3,bleu-4。

  • rouge-n类指标计算N-gram(连续的N个词)的重叠度,其中rouge-1和rouge-2是最常用的,分别对应unigram和bigram,rouge-l 指标基于最长公共子序列(LCS)。

  • bleu (Bilingual Evaluation Understudy) 是另一种流行的评估机器翻译质量的指标,它通过测量机器翻译输出与一组参考翻译之间的N-gram重叠度来评分。其中bleu-n指标计算n-gram的匹配度。

        3.最终评测结果会保存到您指定的OSS路径中

4.3. 多任务对比
  1. 当需要对比多个模型的评测结果时,可以将它们聚合在一个页面上展示,以便于比较效果。

  2. 具体操作为在模型评测任务列表页,左侧选择想要对比的模型评测任务,右上角单击对比,进入对比页面。

  3. 自定义数据集评测对比结果

场景二:面向算法研究人员的公开数据集评测

算法研究通常建立在公开数据集上。研究人员在选择开源模型,或对模型进行微调后,都会参考其在权威公开数据集上的评测效果。然而,大模型时代的公开数据集种类繁多,研究人员需要花费大量时间调研选择适合自己领域的公开数据集,并熟悉每个数据集的评测流程。为方便算法研究人员,PAI接入了多个领域的公开数据集,并完整还原了各个数据集官方指定的评测metrics,以便获取最准确的评测效果反馈,助力更高效的大模型研究。在公开数据集评测中,我们通过对开源的评测数据集按领域分类,对大模型进行综合能力评估,例如数学能力、知识能力、推理能力等,值越大,模型越好,这种评测方式也是大模型领域最常见的评测方式。以下将重点展示使用过程中的一些关键点,更详细的操作细节,请参见模型评测产品文档。

1. 支持的公开数据集

  • 目前PAI维护的公开数据集包括MMLU、TriviaQA、HellaSwag、GSM8K、C-Eval、CMMLU、TruthfulQA,其他公开数据集陆续接入中。

2. 选择适合的模型

2.1. 查找开源模型
  1. 在PAI控制台左侧导航栏选择快速开始,进入快速开始页面

  2. 单击快速开始提供的模型分类信息,直接进入到模型列表中,根据模型描述信息进行查看。

        3.单击进入模型详情页后,对于可评测的模型,会展示评测按钮。

        4.支持模型类型:当前模型评测支持HuggingFace所有AutoModelForCausalLM类型的模型

2.2. 使用微调后的模型
  1. 使用快速开始进行模型微调,详细步骤请参见模型部署及训练

  2. 微调完成后,在快速开始>任务管理>训练任务中,单击训练好的任务名称,进入任务详情页后,对于可评测的模型,右上角会展示评测按钮。

3. 创建评测任务

  1. 在模型详情页右上角单击评测,创建评测任务

  2. 新建评测任务页面,配置以下关键参数。本文以MMLU数据集为例。

  3. 任务创建成功后,将自动分配资源,并开始运行。

  4. 运行完成后,任务状态显示为已成功。

4. 查看评测结果

4.1. 评测任务列表
  1. 快速开始页面,单击搜索框左侧的任务管理

  2. 任务管理页面,选择模型评测标签页。

4.2. 单任务结果
  1. 模型评测列表页,单击评测任务的查看报告选项,即可进入评测任务详情页

  2. 评测报告如下图所示,选择公开数据集评测结果,将在雷达图展示该模型在公开数据集上的得分。

  • 左侧图片展示了模型在不同领域的得分情况。每个领域可能会有多个与之相关的数据集,对属于同一领域的数据集,我们会把模型在这些数据集上的评测得分取均值,作为领域得分。

  • 右侧图片展示模型在各个公开数据集的得分情况。每个公开数据集的评测范围详见该数据集官方介绍。

        3.最终评测结果会保存到您指定的OSS路径中

4.3. 多任务对比
  1. 当需要对比多个模型的评测结果时,可以将它们在聚合在一个页面上展示,以便于比较效果。

  2. 具体操作为在模型评测任务列表页,左侧选择想要对比的模型评测任务,右上角单击对比,进入对比页面。

  3. 公开数据集评测对比结果

这篇关于阿里云PAI大模型评测最佳实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076450

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G