Effective C++ 改善程序与设计的55个具体做法笔记与心得 1

2024-06-19 22:44

本文主要是介绍Effective C++ 改善程序与设计的55个具体做法笔记与心得 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 让自己习惯C++

1. 视C++为一个语言联邦

2. 尽量以const, enum, inline替换#define


#define CALL_WITH_MAX(a,b) f((a) > (b) ? (a) : (b))int a = 5 , b = 0;CALL_WITH_MAX(++a,b); // a = 6, b = 0 CALL_WITH_MAX(++a,b+10); // a = 8, b = 0

你观察到的这个现象是由于宏替换(C preprocessor macro substitution)的工作方式引起的。

当你写CALL_WITH_MAX(++a,b)时,预处理器将整个CALL_WITH_MAX(++a,b)表达式替换为f((++a) > (b) ? (++a) : (b))。你可以看到,这里++a出现了两次。这意味着a的值实际上被增加了两次。

对于CALL_WITH_MAX(++a,b+10),在宏展开后的结果是f((++a) > (b+10) ? (++a) : (b+10))。在这种情况下,只有当++a小于b+10时,++a才会被调用第二次。由于++a(即6)大于b+10(即0+10),所以++a只会被调用一次。

这就是导致你观察到的现象的原因。为了防止这类问题的出现,尽量不要在宏的参数中使用有副作用(比如修改变量值)的表达式。


template<typename T>inline void callWithMax(const T& a, const T& b) {f(a > b ? a : b);}

这里你看到的是C++中的模板函数。模板函数允许我们为多种数据类型编写同一套代码。换句话说,它们允许我们实现所谓的"泛型编程"。

在你给出的函数callWithMax中,它接收两个参数ab,并调用函数f,传入的参数是ab中的较大值。这里的T是一个模板参数,它表示一个类型。这意味着你可以使用任何类型的数据来调用callWithMax,只要这个类型支持>运算符和可以作为f的参数。

例如,如果有一个函数f接收一个int参数,你可以这样使用这个模板函数:

int a = 5, b = 10;
callWithMax(a, b);  // 这里f(10)将被调用

同样,如果f接收一个double参数,你也可以传入两个double值:

double a = 1.2, b = 3.4;
callWithMax(a, b);  // 这里f(3.4)将被调用

总的来说,这个模板函数提供了一种通用的方式,让我们可以用同样的代码处理不同类型的数据。

请记住:

  1. 对于单纯常量,最好以const对象或enums替换#defines
  2. 对于形似函数的宏(macros),最好改用inline函数替换#defines

3. 尽可能使用const

如果const出现在星号左边,表示被指物是常量;如果出现在右边,表示指针自身是常量;如果出现在星号两边,表示被指物和指针两者都是常量。

  1. const在星号左边:你不能通过指针来更改其所指向对象的值,但可以使指针指向其他对象。
int x = 10, y = 20;
const int* ptr = &x;
// *ptr = 30; //错误,无法通过ptr改变x的值
ptr = &y; //正确,可以更改ptr指向的对象
  1. const在星号右边:你可以通过指针来更改其所指向对象的值,但不能使指针指向其他对象。
int x = 10, y = 20;
int* const ptr = &x;
*ptr = 30; //正确,可以通过ptr来改变x的值
// ptr = &y; //错误,无法更改ptr指向的对象
  1. const出现在星号两边:既不能通过指针来更改其所指向对象的值,也不能使指针指向其他对象。
int x = 10, y = 20;
const int* const ptr = &x;
// *ptr = 30; //错误,无法通过ptr改变x的值
// ptr = &y; //错误,无法更改ptr指向的对象

每种情况下,试图违反const约束的操作都会导致编译错误。这是因为const关键字的作用就是帮助开发者避免无意或错误的更改值。

‌‌‌‌  在C++中,如果一个对象被声明为const,那么我们只能调用它的const方法。因为const方法保证了它们不会修改对象的状态。mutable是C++中的一个存储类说明符,跟const关键字一起使用,可以使得const对象中的成员变量在const成员函数中可以被修改。
举例说明


#include<bits/stdc++.h>
using namespace std;class MyClass {
public:MyClass() : m_val(0) {}void inc(){m_val++;  }int getVal(){return m_val;}
private:mutable int m_val;
};
int main() {const MyClass obj;obj.inc();cout << obj.getVal() << endl;  // 输出: 1return 0;
}//上面的代码会报错,因为const对象只能调用他的const方法,正确的代码如下:#include<bits/stdc++.h>
using namespace std;class MyClass {
public:MyClass() : m_val(0) {}void inc() const{m_val++;  }int getVal() const{return m_val;}
private:mutable int m_val;
};
int main() {const MyClass obj;obj.inc();cout << obj.getVal() << endl;  // 输出: 1return 0;
}

请记住:

  1. 将某些东西声明为const可帮助编译器侦测出错误用法。const可被施加于任何作用域内的对象、函数参数、函数返回类型、成员函数本体。
  2. 编译器强制实施bitwise constness,但你编写程序时应该使用“概念上的常量性”。
  3. 当const和non-const成员函数有着是指等价的实现时,令non-const版本调用const版本可避免代码重复。

class MyClass { 
public: int getValue() const { return m_value; } int& getValue() { return const_cast<int&>(static_cast<const MyClass&>(*this).getValue()); } 
private:int m_value{}; 
};//在这个例子中,non-const的`getValue()`函数调用了const版本的`getValue()`函数。我们首先将当前对象(用`*this`表示)转化为`const`引用,之后调用的`getValue()`就是`const`版本的了。

4. 确定对象被使用前已先被初始化


class PhoneNumber{...};
class ABEntry{
public:ABEntry(const string& name, const string& address, const list<PhoneNumber>& phones);
private:string theName;string theAddress;list<PhoneNumber> thePhones;int numTimesConsulted;
};ABEntry::ABEntry(const string& name, const string& address, const list<PhoneNumber>& phones){theName = name;theAddress = address; // 这里的赋值操作是浅拷贝thePhones = phones;    //而非初始化numTimesConsulted = 0;
}

比较好的写法是下面这种,直接初始化:


ABEntry::ABEntry(const string& name, const string& address, const list<PhoneNumber>& phones): theName(name), theAddress(address), thePhones(phones), numTimesConsulted(0){}

请记住:

  1. 为内置型对象进行手工初始化,因为C++不保证初始化他们。
  2. 构造函数最好使用成员初值列,而不要在构造函数本体内使用赋值操作。初值列列出的成员变量,其排列顺序应该和他们在class中声明次序相同。
  3. 为免除“跨编译单元值初始化次序”问题,请以local static对象替换non-local static对象。

这篇关于Effective C++ 改善程序与设计的55个具体做法笔记与心得 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076362

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关