python --- 二分图匈牙利算法和KM算法

2024-06-19 09:32

本文主要是介绍python --- 二分图匈牙利算法和KM算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础概念

关于匈牙利算法的基础概念就不作具体描述了,不清楚的可以自己搜索相关知识
主要需要了解的知识点

  • 二分图
  • 匹配:最大匹配,完美匹配
  • 路径:交错路径,增广路径

算法核心:通过不断寻找增广路径找到最大匹配的道路

算法实现

1. 使用线性规划库scipy

默认取最小组合,设置maximize为True时取最大组合

import numpy as np
from scipy.optimize import linear_sum_assignmenta = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
row, col = linear_sum_assignment(a)
print("行坐标:", row, "列坐标:", col, "最小组合:", a[row, col])
row, col = linear_sum_assignment(a, True)	
print("行坐标:", row, "列坐标:", col, "最大组合:", a[row, col])

输出

行坐标: [0 1 2] 列坐标: [2 3 1] 最小组合: [ 3 35 18]
行坐标: [0 1 2] 列坐标: [0 1 2] 最大组合: [84 56 35]
2. 使用munkres库

源码:https://github.com/bmc/munkres
文档:http://software.clapper.org/munkres/

目前该库已经可以使用pip install munkres安装

默认是取最小组合,需要取最大组合则使用make_cost_matrix转换数据矩阵

import numpy as np
from munkres import Munkres, make_cost_matrix, DISALLOWEDa = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
b = make_cost_matrix(a, lambda cost: (a.max() - cost) if (cost != DISALLOWED) else DISALLOWED)mk = Munkres()
# 最小组合
indexes = mk.compute(a.copy()) # 会改变输入的源数据
print("最小组合:",indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])
# 最大组合
indexes = mk.compute(b)
print("最大组合:", indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])

输出

最小组合:[(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合:[(0, 0), (1, 1), (2, 2)] [84 56 35]

注意使用np.array输入,mk.compute会改变输入的源数据

3. KM算法python实现

基本思想:通过引入顶标,将最优权值匹配转化为最大匹配问题
参考:
https://blog.csdn.net/u010510549/article/details/91350549
https://www.cnblogs.com/fzl194/p/8848061.html

实现了矩阵的自动补0和最大最小组合计算

import numpy as npclass KM:def __init__(self):self.matrix = Noneself.max_weight = 0self.row, self.col = 0, 0  # 源数据行列self.size = 0   # 方阵大小self.lx = None  # 左侧权值self.ly = None  # 右侧权值self.match = None   # 匹配结果self.slack = None   # 边权和顶标最小的差值self.visx = None    # 左侧是否加入增广路self.visy = None    # 右侧是否加入增广路# 调整数据def pad_matrix(self, min):if min:max = self.matrix.max() + 1self.matrix = max-self.matrixif self.row > self.col:   # 行大于列,添加列self.matrix = np.c_[self.matrix, np.array([[0] * (self.row - self.col)] * self.row)]elif self.col > self.row:  # 列大于行,添加行self.matrix = np.r_[self.matrix, np.array([[0] * self.col] * (self.col - self.row))]def reset_slack(self):self.slack.fill(self.max_weight + 1)def reset_vis(self):self.visx.fill(False)self.visy.fill(False)def find_path(self, x):self.visx[x] = Truefor y in range(self.size):if self.visy[y]:continuetmp_delta = self.lx[x] + self.ly[y] - self.matrix[x][y]if tmp_delta == 0:self.visy[y] = Trueif self.match[y] == -1 or self.find_path(self.match[y]):self.match[y] = xreturn Trueelif self.slack[y] > tmp_delta:self.slack[y] = tmp_deltareturn Falsedef km_cal(self):for x in range(self.size):self.reset_slack()while True:self.reset_vis()if self.find_path(x):breakelse:  # update slackdelta = self.slack[~self.visy].min()self.lx[self.visx] -= deltaself.ly[self.visy] += deltaself.slack[~self.visy] -= deltadef compute(self, datas, min=False):""":param datas: 权值矩阵:param min: 是否取最小组合,默认最大组合:return: 输出行对应的结果位置"""self.matrix = np.array(datas) if not isinstance(datas, np.ndarray) else datasself.max_weight = self.matrix.sum()self.row, self.col = self.matrix.shape  # 源数据行列self.size = max(self.row, self.col)self.pad_matrix(min)print(self.matrix)self.lx = self.matrix.max(1)self.ly = np.array([0] * self.size, dtype=int)self.match = np.array([-1] * self.size, dtype=int)self.slack = np.array([0] * self.size, dtype=int)self.visx = np.array([False] * self.size, dtype=bool)self.visy = np.array([False] * self.size, dtype=bool)self.km_cal()match = [i[0] for i in sorted(enumerate(self.match), key=lambda x: x[1])]result = []for i in range(self.row):result.append((i, match[i] if match[i] < self.col else -1))  # 没有对应的值给-1return resultif __name__ == '__main__':a = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])# a = np.array([[84, 65], [3, 34], [63, 18], [35, 12]])km = KM()min_ = km.compute(a.copy(), True)print("最小组合:", min_, a[[i[0] for i in min_], [i[1] for i in min_]])max_ = km.compute(a.copy())print("最大组合:", max_, a[[i[0] for i in max_], [i[1] for i in max_]])

输出:

最小组合: [(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合: [(0, 0), (1, 1), (2, 2)] [84 56 35]

这篇关于python --- 二分图匈牙利算法和KM算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074650

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核