python --- 二分图匈牙利算法和KM算法

2024-06-19 09:32

本文主要是介绍python --- 二分图匈牙利算法和KM算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础概念

关于匈牙利算法的基础概念就不作具体描述了,不清楚的可以自己搜索相关知识
主要需要了解的知识点

  • 二分图
  • 匹配:最大匹配,完美匹配
  • 路径:交错路径,增广路径

算法核心:通过不断寻找增广路径找到最大匹配的道路

算法实现

1. 使用线性规划库scipy

默认取最小组合,设置maximize为True时取最大组合

import numpy as np
from scipy.optimize import linear_sum_assignmenta = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
row, col = linear_sum_assignment(a)
print("行坐标:", row, "列坐标:", col, "最小组合:", a[row, col])
row, col = linear_sum_assignment(a, True)	
print("行坐标:", row, "列坐标:", col, "最大组合:", a[row, col])

输出

行坐标: [0 1 2] 列坐标: [2 3 1] 最小组合: [ 3 35 18]
行坐标: [0 1 2] 列坐标: [0 1 2] 最大组合: [84 56 35]
2. 使用munkres库

源码:https://github.com/bmc/munkres
文档:http://software.clapper.org/munkres/

目前该库已经可以使用pip install munkres安装

默认是取最小组合,需要取最大组合则使用make_cost_matrix转换数据矩阵

import numpy as np
from munkres import Munkres, make_cost_matrix, DISALLOWEDa = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
b = make_cost_matrix(a, lambda cost: (a.max() - cost) if (cost != DISALLOWED) else DISALLOWED)mk = Munkres()
# 最小组合
indexes = mk.compute(a.copy()) # 会改变输入的源数据
print("最小组合:",indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])
# 最大组合
indexes = mk.compute(b)
print("最大组合:", indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])

输出

最小组合:[(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合:[(0, 0), (1, 1), (2, 2)] [84 56 35]

注意使用np.array输入,mk.compute会改变输入的源数据

3. KM算法python实现

基本思想:通过引入顶标,将最优权值匹配转化为最大匹配问题
参考:
https://blog.csdn.net/u010510549/article/details/91350549
https://www.cnblogs.com/fzl194/p/8848061.html

实现了矩阵的自动补0和最大最小组合计算

import numpy as npclass KM:def __init__(self):self.matrix = Noneself.max_weight = 0self.row, self.col = 0, 0  # 源数据行列self.size = 0   # 方阵大小self.lx = None  # 左侧权值self.ly = None  # 右侧权值self.match = None   # 匹配结果self.slack = None   # 边权和顶标最小的差值self.visx = None    # 左侧是否加入增广路self.visy = None    # 右侧是否加入增广路# 调整数据def pad_matrix(self, min):if min:max = self.matrix.max() + 1self.matrix = max-self.matrixif self.row > self.col:   # 行大于列,添加列self.matrix = np.c_[self.matrix, np.array([[0] * (self.row - self.col)] * self.row)]elif self.col > self.row:  # 列大于行,添加行self.matrix = np.r_[self.matrix, np.array([[0] * self.col] * (self.col - self.row))]def reset_slack(self):self.slack.fill(self.max_weight + 1)def reset_vis(self):self.visx.fill(False)self.visy.fill(False)def find_path(self, x):self.visx[x] = Truefor y in range(self.size):if self.visy[y]:continuetmp_delta = self.lx[x] + self.ly[y] - self.matrix[x][y]if tmp_delta == 0:self.visy[y] = Trueif self.match[y] == -1 or self.find_path(self.match[y]):self.match[y] = xreturn Trueelif self.slack[y] > tmp_delta:self.slack[y] = tmp_deltareturn Falsedef km_cal(self):for x in range(self.size):self.reset_slack()while True:self.reset_vis()if self.find_path(x):breakelse:  # update slackdelta = self.slack[~self.visy].min()self.lx[self.visx] -= deltaself.ly[self.visy] += deltaself.slack[~self.visy] -= deltadef compute(self, datas, min=False):""":param datas: 权值矩阵:param min: 是否取最小组合,默认最大组合:return: 输出行对应的结果位置"""self.matrix = np.array(datas) if not isinstance(datas, np.ndarray) else datasself.max_weight = self.matrix.sum()self.row, self.col = self.matrix.shape  # 源数据行列self.size = max(self.row, self.col)self.pad_matrix(min)print(self.matrix)self.lx = self.matrix.max(1)self.ly = np.array([0] * self.size, dtype=int)self.match = np.array([-1] * self.size, dtype=int)self.slack = np.array([0] * self.size, dtype=int)self.visx = np.array([False] * self.size, dtype=bool)self.visy = np.array([False] * self.size, dtype=bool)self.km_cal()match = [i[0] for i in sorted(enumerate(self.match), key=lambda x: x[1])]result = []for i in range(self.row):result.append((i, match[i] if match[i] < self.col else -1))  # 没有对应的值给-1return resultif __name__ == '__main__':a = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])# a = np.array([[84, 65], [3, 34], [63, 18], [35, 12]])km = KM()min_ = km.compute(a.copy(), True)print("最小组合:", min_, a[[i[0] for i in min_], [i[1] for i in min_]])max_ = km.compute(a.copy())print("最大组合:", max_, a[[i[0] for i in max_], [i[1] for i in max_]])

输出:

最小组合: [(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合: [(0, 0), (1, 1), (2, 2)] [84 56 35]

这篇关于python --- 二分图匈牙利算法和KM算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074650

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.