头歌大数据答案(自用)

2024-06-19 06:04
文章标签 数据 答案 头歌 自用

本文主要是介绍头歌大数据答案(自用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一关

# 命令行
start-all.sh
nohup hive --service metastore &
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.functions._
object cleandata {def main(args: Array[String]): Unit = {//创建spark对象val spark = SparkSession.builder().appName("HiveSupport").master("local[*]").config("spark.sql.warehouse.dir", "hdfs://127.0.0.1:9000/opt/hive/warehouse").config("hive.metastore.uris", "thrift://127.0.0.1:9083").config("dfs.client.use.datanode.hostname", "true").enableHiveSupport().getOrCreate()//############# Begin ############//创建hive数据库daobidataspark.sql("create database daobidata")//创建hive数据表spark.sql("use daobidata")//创建diedata表spark.sql("create table if not exists diedata(bianh int,com_name string," +"com_addr string,cat string,se_cat string,com_des string,born_data string," +"death_data string,live_days int,financing string,total_money int,death_reason string,"+"invest_name string,ceo_name string,ceo_des string"+")row format delimited fields terminated by ',';")//将本地datadie.csv文件导入至hive数据库diedata表中spark.sql("load data local inpath '/data/workspace/myshixun/data/datadie.csv' into table diedata;")//进入diedata表进行清洗操作,删除为空的数据,根据倒闭原因切分出最主要原因,根据成立时间切分出,企业成立的年份,根据倒闭时间切分出,企业倒闭的年份val c1 = spark.table("diedata").na.drop("any").distinct().withColumn("death_reason",split(col("death_reason")," ")(0)).withColumn("bornyear",split(col("born_data"),"/")(0)).withColumn("deathyear",split(col("death_data"),"/")(0))c1.createOrReplaceTempView("c1")//创建die_data表spark.sql("create table if not exists die_data(bianh int,com_name string," +"com_addr string,cat string,se_cat string,com_des string,born_data string," +"death_data string,live_days int,financing string,total_money int,death_reason string,"+"invest_name string,ceo_name string,ceo_des string,bornyear string,deathyear string"+")row format delimited fields terminated by ',';")//将清洗完的数据导入至die_data表中spark.sql("insert overwrite table die_data select * from c1")//############# End ##############spark.stop()}
}

第二关

import org.apache.spark.sql.{SaveMode, SparkSession}
object citydiedata {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//************* Begin **************//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据城市统计企业倒闭top5val df=spark.sql("select df1.com_addr as com_addr,count(df1.com_addr) as saddr from df1 group by df1.com_addr order by saddr desc limit 5").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//保存至数据库的数据表名.option("dbtable", "addr")//用户名.option("user", "root")//连接数据库的密码.option("password", "123123")//不破坏数据表结构,在后添加.mode(SaveMode.Append).save()//************ End ***********spark.stop()}
}   

import org.apache.spark.sql.{SaveMode, SparkSession}
object industrydata {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//########## Begin ############//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据行业统计企业倒闭top10val df=spark.sql("select df1.cat as industry,count(df1.cat) as catindustry from df1 group by df1.cat order by catindustry desc limit 10 ").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "industry").option("user", "root").option("password", "123123")//不破坏数据表结构,在后添加.mode(SaveMode.Append).save()//############ End ###########spark.stop()}
}  

import org.apache.spark.sql.{SaveMode, SparkSession}
object closedown {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//############ Begin ###########//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据倒闭原因字段,找到企业倒闭的主要原因,统计主要原因的个数val df=spark.sql("select df1.death_reason as death_reason,count(df1.death_reason) as dreason from df1 group by df1.death_reason order by dreason desc").repartition(1).write//连接数据库.format("jdbc")//数据库名.option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "cldown").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//############ End ###########spark.stop()}
}

import org.apache.spark.sql.{SaveMode, SparkSession}
object comfinanc {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//############ Begin ###########//读取数据,用逗号分隔,去除表头,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据行业细分领域字段,统计企业倒闭分布情况top20val df=spark.sql("select df1.se_cat as se_cat,count(df1.se_cat) as countsecat from df1 group by df1.se_cat order by countsecat desc limit 10").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "secat").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//使用spark SQL语句,统计倒闭企业融资情况val d1=spark.sql("select df1.financing as financing,count(df1.financing) as countfinanc from df1 group by df1.financing order by countfinanc desc").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "financing").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//########## End #########spark.stop()}
}

import org.apache.spark.sql.{SaveMode, SparkSession}
object yeardata {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//############ Begin ###########//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//根据企业成立时间字段,统计每年有多少成立的企业val d1=spark.sql("select df1.bornyear as bornyear,count(df1.bornyear) as byear from df1 group by df1.bornyear order by bornyear desc limit 10").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "bornyear").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//根据企业倒闭年份字段,统计企业每个年份倒闭的数量val d2=spark.sql("select df1.deathyear as deathyear,count(df1.deathyear) as dyear from df1 group by df1.deathyear order by deathyear desc limit 10").repartition(1).write//连接数据库.format("jdbc")//数据库名.option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "deathyear").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//############# End ############spark.stop()}
}

第三关

from app import db
class diedata(db.Model):__tablename__ = "addr"#**************** Begin ************#ID = db.Column(db.Integer, primary_key=True)  ##序号 主键com_addr = db.Column(db.String(255))  ##城市saddr = db.Column(db.Integer)  ##统计企业倒闭数量#************* End *************#
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
@index.route("/city")
def index1():selectdata = db.session.query(diedata.com_addr).all()selectdata1 = db.session.query(diedata.saddr).all()list1 =[]list2=[]#********** Begin **********##获取城市倒闭企业top5的数据for k in selectdata:data = {"com_addr": k.com_addr,}list1.append(data)for i in selectdata1:list2.append(i[0])return render_template("test3.html", com_addr=list1, saddr=list2)#*********** End ***********#
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>城市倒闭企业统计情况</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//*********** Begin ***************com_addr=[]{% for a in com_addr %}com_addr.push('{{ a.com_addr }}');{% endfor %}var saddr={{saddr|tojson}};option = {title:{text:'城市倒闭企业top5展示图',left:'center'},legend: {data: ['城市倒闭企业个数'], //这里设置柱状图上面的方块,名称跟series里的name保持一致align: 'right', //图例显示的位置:靠左,靠右还是居中的设置.不设置则居中right: 10,},xAxis: {type: 'category',data: com_addr},yAxis: {type: 'value',name: '倒闭个数',axisLabel: {formatter: '{value} 个'}},series: [{data: saddr,type: 'bar',name: '城市倒闭企业个数',itemStyle: {normal: {color:'blue',lineStyle:{color:'blue'},label : {show: true}}}}]};myChart.setOption(option);//************ End ***************</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "industrydata"#************* Begin ************ID = db.Column(db.Integer, primary_key=True)  ##序号 主键industry = db.Column(db.String(255))  ##行业名catindustry = db.Column(db.Integer)  ##行业倒闭数#************* End ************
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
@index.route("/industry")
def index1():#************* Begin ************selectdata = db.session.query(diedata.industry).all()selectdata1 = db.session.query(diedata.catindustry).all()list1 =[]list2=[]for k in selectdata:data = {"industry": k.industry,}list1.append(data)for i in selectdata1:list2.append(i[0])return render_template("test3.html", industry=list1, catindustry=list2)#************* End *************
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>城市倒闭企业统计情况</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//************* Begin ************industry=[]{% for a in industry %}industry.push('{{ a.industry }}');{% endfor %}var catindustry={{catindustry|tojson}};option = {title:{text:'行业企业倒闭top10折线图',left:'center'},legend: {data: ['行业企业倒闭数'], //这里设置柱状图上面的方块,名称跟series里的name保持一致align: 'right', //图例显示的位置:靠左,靠右还是居中的设置.不设置则居中right: 10,},xAxis: {type: 'category',name: '行业分类',axisLabel: {formatter: '{value}'},data: industry},yAxis: {type: 'value',name: '行业企业倒闭数',axisLabel: {formatter: '{value} 个'}},series: [{name:'行业企业倒闭数',data: catindustry,type: 'line',smooth: true,label:{show:true},itemStyle: {normal: {color:'green',lineStyle:{color:'green'},label : {show: true}}}}]};myChart.setOption(option);//************* End ************</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "closedown"############ Begin ###########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键death_reason = db.Column(db.String(255))  ##倒闭原因dreason = db.Column(db.Integer)  ##倒闭原因统计############ End ###########
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
@index.route("/deathreason")
def index1():selectdata = db.session.query(diedata.death_reason,diedata.dreason).all()list1 =[]############# Begin ############for k in selectdata:data = {"name": k.death_reason,"value":k.dreason}list1.append(data)return render_template("test3.html", datas=list1)############# End ############
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>企业倒闭的原因</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//########### Begin #############var datas={{datas|tojson}};option = {title: {text: '企业倒闭原因结果统计图',left: 'center'},legend: {top: 'bottom',data:datas},tooltip: {trigger: 'item',formatter: '{b} : {c} ({d}%)'},toolbox: {show: true},series: [{type: 'pie',radius: [50, 250],center: ['50%', '50%'],roseType: 'area',itemStyle: {borderRadius: 8},data:datas}]};myChart.setOption(option);//########### End #############</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "secat"############## Begin ###########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键se_cat = db.Column(db.String(255))  ##细分领域countsecat = db.Column(db.Integer)  ##细分领域企业倒闭数############## End ############
class diedata1(db.Model):__tablename__ = "financing"############## Begin ###########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键financing = db.Column(db.String(255))  ##融资名countfinanc = db.Column(db.Integer)  ##融资个数############## End ############
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
from app.model.models import diedata1
@index.route("/fincat")
def index1():selectdata = db.session.query(diedata.se_cat).all()selectdata1 =db.session.query(diedata.countsecat).all()selectdata2=db.session.query(diedata1.financing).all()selectdata3=db.session.query(diedata1.countfinanc).all()list1 =[]list2 = []list3 = []list4 = []############## Begin ###########for i in selectdata:data = {"se_cat": i.se_cat,}list1.append(data)for j in selectdata1:list2.append(j[0])for x in selectdata2:data = {"financing": x.financing,}list3.append(data)for y in selectdata3:list4.append(y[0])return render_template("test3.html", se_cat=list1,countsecat=list2,financing=list3,countfinanc=list4)############## End ###########
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>企业融资以及细分领域倒闭企业数据</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//############## Begin ###########se_cat=[]{% for a in se_cat %}se_cat.push('{{ a.se_cat }}');{% endfor %}var countsecat={{countsecat|tojson}};financing=[]{% for b in financing %}financing.push('{{ b.financing }}');{% endfor %}var countfinanc={{countfinanc|tojson}};option = {title: [{left: 'center',text: '细分领域企业倒闭数'},{top: '55%',left: 'center',text: '企业融资情况'}],tooltip: {trigger: 'axis'},legend: {data: ['细分领域', '融资'],left: 10},xAxis: [{data: se_cat},{data: financing,gridIndex: 1}],yAxis: [{},{gridIndex: 1}],grid: [{bottom: '60%'},{top: '60%'}],series: [{name:'细分领域',type: 'bar',showSymbol: true,data: countsecat,label:{show:true},itemStyle: {normal: {color:'red',lineStyle:{color:'red'},label : {show: true}}}},{name:'融资',type: 'line',showSymbol: true,data: countfinanc,xAxisIndex: 1,yAxisIndex: 1,label:{show:true},itemStyle: {normal: {color:'green',lineStyle:{color:'green'},label : {show: true}}}}]};myChart.setOption(option);//############## End ###########</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "bornyear"########### Begin ##########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键bornyear = db.Column(db.String(255))  ##成立年份byear = db.Column(db.Integer)  ##计数########### End ##########
class diedata1(db.Model):__tablename__ = "deathyear"########### Begin ##########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键deathyear = db.Column(db.String(255))  ##倒闭年份dyear = db.Column(db.Integer)  ##计数########### End ##########
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
from app.model.models import diedata1
@index.route("/ydata")
def index1():########### Begin ##########selectdata = db.session.query(diedata.bornyear,diedata.byear).all()selectdata1 =db.session.query(diedata1.deathyear,diedata1.dyear).all()list1 =[]list2 = []list3 = []list4 = []for x in selectdata:list1.append(str(x[0])+'年')list2.append(x[1])for j in selectdata1:list3.append(str(j[0])+'年')list4.append(j[1])############ End ############return render_template("test3.html", bornyear=list1,byear=list2,deathyear=list3,dyear=list4)
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>企业成立年份和倒闭年份</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>//########### Begin ###########var myChart = echarts.init(document.getElementById('main'));var bornyear={{bornyear|tojson}};var byear={{byear|tojson}};var deathyear={{deathyear|tojson}};var dyear={{dyear|tojson}};option = {title: [{left: 'center',text: '企业成立年份柱状图'},{top: '55%',left: 'center',text: '企业倒闭年份柱状图'}],tooltip: {trigger: 'axis'},legend: {data: ['成立年份', '倒闭年份'],left: 10},xAxis: [{data: bornyear},{data: deathyear,gridIndex: 1}],yAxis: [{},{gridIndex: 1}],grid: [{bottom: '60%'},{top: '60%'}],series: [{name:'成立年份',type: 'bar',showSymbol: true,data: byear,label:{show:true},itemStyle: {normal: {color:'red',lineStyle:{color:'red'},label : {show: true}}}},{name:'倒闭年份',type: 'bar',showSymbol: true,data: dyear,xAxisIndex: 1,yAxisIndex: 1,label:{show:true},itemStyle: {normal: {color:'green',lineStyle:{color:'green'},label : {show: true}}}}]};myChart.setOption(option);//########### End ###########</script>
</body>
</html>

这篇关于头歌大数据答案(自用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074211

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒