Apache Flink详解:流处理与批处理的强大框架

2024-06-19 06:04

本文主要是介绍Apache Flink详解:流处理与批处理的强大框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Flink详解:流处理与批处理的强大框架

CSDN开发云
Apache Flink是一个开源的流处理框架,旨在处理大规模数据流。Flink能够处理实时流数据和批处理数据,具有高吞吐量、低延迟、容错等特性。以下是对Flink的详细介绍:

核心概念

流与批处理:

  • 流处理 (Stream Processing): 持续不断地处理实时生成的数据流。
  • 批处理 (Batch Processing): 处理已经收集好的静态数据集。

DataStream API:

  • 用于处理无界和有界的数据流。
  • 支持各种转换操作,如map、filter、keyBy、window、reduce等。

DataSet API:

  • 用于批处理任务,已在Flink 1.12中被标记为过时,推荐使用DataStream API来统一处理流和批任务。

State和时间处理:

  • Flink的状态机制允许在流处理过程中存储和访问状态,支持有状态计算。
  • 时间处理包括事件时间 (Event Time)、处理时间 (Processing Time) 和摄入时间 (Ingestion Time),可用于窗口操作等时间相关的计算。

核心组件

JobManager:

  • 负责协调和调度Flink任务的执行。
  • 管理任务的生命周期和故障恢复。

TaskManager:

  • 负责执行实际的数据流处理任务。
  • 每个TaskManager包含多个slots,用于执行不同的任务。

Checkpointing:

  • Flink支持一致性检查点,用于故障恢复。
  • Checkpoint机制将应用状态持久化到外部存储系统,如HDFS、S3等。

Windows:

  • Flink支持基于时间的窗口操作,用于对数据流进行分片处理。
  • 常见的窗口类型包括滚动窗口 (Tumbling Windows)、滑动窗口 (Sliding Windows) 和会话窗口 (Session Windows)。

部署模式

Standalone:

  • Flink可以以独立模式部署,适用于简单的开发和测试环境。

集群模式:

  • 支持在各种集群管理系统上运行,如YARN、Kubernetes、Mesos等。

云部署:

  • Flink可以部署在AWS、Google Cloud等云平台上,利用其弹性扩展和管理功能。

应用场景

实时数据分析:

  • 实时监控、实时推荐系统、实时风控等需要低延迟处理的应用。

ETL(Extract, Transform, Load):

  • 数据抽取、转换和加载,特别是需要实时处理的场景。

机器学习:

  • 实时特征工程和模型训练。

事件驱动应用:

  • 复杂事件处理 (CEP),检测特定模式或事件序列。

优势与特点

高吞吐量、低延迟:

  • 通过高效的数据处理引擎,实现高吞吐量和低延迟。

容错和一致性:

  • 通过Checkpoint机制,保证数据处理的一致性和容错性。

灵活的时间处理:

  • 强大的时间处理功能,支持多种时间语义和窗口操作。

动态扩展:

  • 支持动态扩展,可以根据负载变化调整计算资源。

示例代码

在pom.xml中添加Flink相关依赖:

<dependencies><!-- Spring Boot dependencies --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency><!-- Apache Flink dependencies --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>1.14.0</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>1.14.0</version></dependency>
</dependencies>

下面是一个简单的Flink流处理应用,读取数据源,进行简单的转换和输出:

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class WordCount {public static void main(String[] args) throws Exception {// 设置执行环境final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 从socket读取数据DataStream<String> text = env.socketTextStream("localhost", 9999);// 解析数据,按单词计数DataStream<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).keyBy(value -> value.f0).sum(1);// 打印结果counts.print();// 执行任务env.execute("Streaming WordCount");}// 用于解析数据的函数public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {@Overridepublic void flatMap(String value, Collector<Tuple2<String, Integer>> out) {for (String word : value.split("\\s")) {if (word.length() > 0) {out.collect(new Tuple2<>(word, 1));}}}}
}

总结

Apache Flink是一种功能强大的流处理框架,适用于各种实时数据处理场景。其高性能、容错能力和灵活的时间处理特性,使其成为大数据处理的重要工具。通过对流和批处理的一体化支持,Flink为开发者提供了统一的数据处理平台。

这篇关于Apache Flink详解:流处理与批处理的强大框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074206

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML