Spark Streaming(一)—— Spark Streaming介绍

2024-06-19 04:38
文章标签 介绍 spark streaming

本文主要是介绍Spark Streaming(一)—— Spark Streaming介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 什么是Spark Streaming
  • 2. Spark Streaming特点
  • 3. 常用的实时计算引擎
  • 4. Spark Streaming内部结构
  • 5. StreamingContext对象创建方式
  • 6. 离散流DStream
    • 6.1 什么是DStream
    • 6.2 DStream中的算子
  • 7. 窗口

1. 什么是Spark Streaming

Spark Streaming makes it easy to build scalable fault-tolerant streaming applications.
易于构建灵活的、高容错的流式系统。

流式计算框架

Spark Streaming是核心Spark API的扩展,可实现可扩展、高吞吐量、可容错的实时数据流处理。数据可以从诸如Kafka,Flume,Kinesis或TCP套接字等众多来源获取,并且可以使用由高级函数(如map,reduce,join和window)开发的复杂算法进行流数据处理。最后,处理后的数据可以被推送到文件系统,数据库和实时仪表板。而且还可以在数据流上应用Spark提供的机器学习和图处理算法。

在这里插入图片描述

2. Spark Streaming特点

  • 易用:已经集成在Spark中
  • 容错性:底层也是RDD,RDD本身就具备了容错机制。
  • 支持多种语言:Java Scala Python

3. 常用的实时计算引擎

  1. Apache Storm:真正的流式计算

  2. Spark Streaming:严格上来说,Spark Streaming不是真正的流式计算。

    把连续的流式数据,当成不连续的RDD来处理。
    本质上:是一个离线计算。当采样时间特别短时,可以看成是流式计算。

  3. Flink:真正的流式计算。跟Spark Streaming 相反。

    把离散的数据,当成流式数据来处理。
    目前还不稳定。从1.8升级到1.9就有很多改变。而且对语言这块,支持比较好的也只是Java和Scala。而且对于机器学习建模这块,虽然有这个东西,但是跟Spark相比,还是有很大差距。所以目前用到最多的还是Spark。Flink是一个未来的东西。

4. Spark Streaming内部结构

内部工作原理如下。Spark Streaming接收实时输入数据流,并将数据切分成批,然后由Spark引擎对其进行处理,最后生成“批”形式的结果流。

在这里插入图片描述

Spark Streaming将连续的数据流抽象为discretizedstream或DStream。在内部,DStream 由一个RDD序列表示。

5. StreamingContext对象创建方式

方式一:通过SparkConf创建

//local[2]代表开启两个线程
val conf = new SparkConf().setAppName("MyNetwordWordCount").setMaster("local[2]")//接收两个参数,第一个conf,第二个是采样时间间隔
val ssc = new StreamingContext(conf,Seconds(3))

程序中的几点说明:

  • appName参数是应用程序在集群UI上显示的名称。
  • master是Spark,Mesos或YARN集群的URL,或者一个特殊的“local [*]”字符串来让程序以本地模式运行。
  • 当在集群上运行程序时,不需要在程序中硬编码master参数,而是使用spark-submit提交应用程序并将master的URL以脚本参数的形式传入。但是,对于本地测试和单元测试,可以通过“local[*]”来运行Spark Streaming程序(请确保本地系统中的CPU核数够用)。
  • StreamingContext会内在的创建一个SparkContext的实例(所有Spark功能的起始点),你可以通过ssc.sparkContext访问到这个实例。
  • 批处理的时间窗口长度必须根据应用程序的延迟要求和可用的集群资源进行设置。

请务必记住以下几点:

  • 一旦一个StreamingContext开始运作,就不能设置或添加新的流计算。
  • 一旦一个上下文被停止,它将无法重新启动。
  • 同一时刻,一个JVM中只能有一个StreamingContext处于活动状态。
  • StreamingContext上的stop()方法也会停止SparkContext。 要仅停止StreamingContext(保持SparkContext活跃),请将stop() 方法的可选参数stopSparkContext设置为false。
  • 只要前一个StreamingContext在下一个StreamingContext被创建之前停止(不停止SparkContext),SparkContext就可以被重用来创建多个StreamingContext。

方式二:从现有的SparkContext实例中创建

在这里插入图片描述

6. 离散流DStream

6.1 什么是DStream

DStream(DiscretizedStream),是Spark Streaming对流式数据的基本抽象。它表示连续的数据流,这些连续的数据流可以是从数据源接收的输入数据流,也可以是通过对输入数据流执行转换操作而生成的经处理的数据流。在内部,DStream由一系列连续的RDD表示。

简单的说,就是把连续的数据变成不连续的RDD。DStream是RDD的集合,包含不连续的RDD。DStream的每一个RDD都包含一定时间间隔内的数据。表现形式依然是RDD。操作DStream和操作RDD是一样的。

6.2 DStream中的算子

在这里插入图片描述

  • transform(func)

    val wordCount = words.map((_,1)).reduceByKey(_+_)

    等价于 ==>
    val wordCount = words.transform(x => x.map((_,1))).reduceByKey(_+_)

  • updateStateByKey(func)

    默认情况下,Spark Streaming 不记录之前的状态,每次发一条数据,都是从0开始计算。用这个算子可以实现更新DStream的状态。

    import org.apache.log4j.Logger
    import org.apache.log4j.Level
    import org.apache.spark.SparkConf
    import org.apache.spark.streaming.StreamingContext
    import org.apache.spark.streaming.Seconds
    import org.apache.spark.storage.StorageLevelobject MyTotalNetworkWordCount {def main(args: Array[String]): Unit = {System.setProperty("hadoop.home.dir", "G:\\bin\\hadoop-2.5.2")Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)val conf = new SparkConf().setMaster("local[2]").setAppName("MyTotalNetworkWordCount")val ssc = new StreamingContext(conf,Seconds(3))//设置检查点目录,保存之前的状态信息ssc.checkpoint("hdfs://topnpl200:8020/tmp_files/chkp0826")val lines = ssc.socketTextStream("192.168.15.131", 1234, StorageLevel.MEMORY_ONLY)val words = lines.flatMap(_.split(" "))val wordPair = words.map((_,1))/*** 两个参数:* 第一个参数:当前的值是多少* 第二个参数:之前的结果是多少*/val addFunc = (curreValues:Seq[Int],previousValues:Option[Int]) => {// 进行累加运算// 1、把当前值的序列进行累加val currentTotal = curreValues.sum//2、在之前的值上再累加Some( currentTotal + previousValues.getOrElse(0) )}//进行累加运算val total = wordPair.updateStateByKey(addFunc)total.print()ssc.start()ssc.awaitTermination()}
    }
    

7. 窗口

处理落在窗口中的数据。也是DStream,也是RDD。

注意:

窗口参数有要求,不能随便设置。窗口大小和移动大小,都必须是DStream的批间隔的整数倍。

import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.storage.StorageLevel/*** 需求:每10秒,对过去30秒的数据进行累加** 窗口长度:30秒** 滑动距离:10秒**/
object MyNetWorkWordCountByWindow {def main(args: Array[String]): Unit = {System.setProperty("hadoop.home.dir", "G:\\bin\\hadoop-2.5.2")Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)val conf = new SparkConf().setAppName("MyNetWorkWordCountByWindow").setMaster("local[2]")// 这里设成3s会报错。改成1s。val ssc = new StreamingContext(conf,Seconds(1))val lines = ssc.socketTextStream("192.168.15.131", 1234, StorageLevel.MEMORY_ONLY)val words = lines.flatMap(_.split(" ")).map((_,1))/*** reduce By Key And Window* 三个参数* 1、要进行什么操作* 2、窗口的大小* 3、窗口滑动的距离*/val result = words.reduceByKeyAndWindow((x:Int,y:Int)=>(x+y),Seconds(30),Seconds(10))result.print()ssc.start()ssc.awaitTermination()}}

这篇关于Spark Streaming(一)—— Spark Streaming介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074028

相关文章

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系