FuzzyKmeans的Mahout实现

2024-06-18 18:08
文章标签 实现 mahout fuzzykmeans

本文主要是介绍FuzzyKmeans的Mahout实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不得不说,google更靠谱,比google更更靠谱的是官网!!!

so要好好利用google and official website!!!

https://mahout.apache.org/users/clustering/fuzzy-k-means.html

Fuzzy K-Means

Fuzzy K-Means (also called Fuzzy C-Means) is an extension of K-Means , the popular simple clustering technique. While K-Means discovers hard clusters (a point belong to only one cluster), Fuzzy K-Means is a more statistically formalized method and discovers soft clusters where a particular point can belong to more than one cluster with certain probability.

Algorithm

Like K-Means, Fuzzy K-Means works on those objects which can be represented in n-dimensional vector space and a distance measure is defined. The algorithm is similar to k-means.

  • Initialize k clusters
  • Until converged
    • Compute the probability of a point belong to a cluster for every pair
    • Recompute the cluster centers using above probability membership values of points to clusters

Design Implementation

The design is similar to K-Means present in Mahout. It accepts an input file containing vector points. User can either provide the cluster centers as input or can allow canopy algorithm to run and create initial clusters.

Similar to K-Means, the program doesn't modify the input directories. And for every iteration, the cluster output is stored in a directory cluster-N. The code has set number of reduce tasks equal to number of map tasks. So, those many part-0

Files are created in clusterN directory. The code uses driver/mapper/combiner/reducer as follows:

FuzzyKMeansDriver - This is similar to  KMeansDriver. It iterates over input points and cluster points for specified number of iterations or until it is converged.During every iteration i, a new cluster-i directory is created which contains the modified cluster centers obtained during FuzzyKMeans iteration. This will be feeded as input clusters in the next iteration.  Once Fuzzy KMeans is run for specified number of iterations or until it is converged, a map task is run to output "the point and the cluster membership to each cluster" pair as final output to a directory named "points".

FuzzyKMeansMapper - reads the input cluster during its configure() method, then  computes cluster membership probability of a point to each cluster.Cluster membership is inversely propotional to the distance. Distance is computed using  user supplied distance measure. Output key is encoded clusterId. Output values are ClusterObservations containing observation statistics.

FuzzyKMeansCombiner - receives all key:value pairs from the mapper and produces partial sums of the cluster membership probability times input vectors for each cluster. Output key is: encoded cluster identifier. Output values are ClusterObservations containing observation statistics.

FuzzyKMeansReducer - Multiple reducers receives certain keys and all values associated with those keys. The reducer sums the values to produce a new centroid for the cluster which is output. Output key is: encoded cluster identifier (e.g. "C14". Output value is: formatted cluster identifier (e.g. "C14"). The reducer encodes unconverged clusters with a 'Cn' cluster Id and converged clusters with 'Vn' clusterId.

Running Fuzzy k-Means Clustering

The Fuzzy k-Means clustering algorithm may be run using a command-line invocation on FuzzyKMeansDriver.main or by making a Java call to FuzzyKMeansDriver.run().

Invocation using the command line takes the form:

bin/mahout fkmeans \-i <input vectors directory> \-c <input clusters directory> \-o <output working directory> \-dm <DistanceMeasure> \-m <fuzziness argument >1> \-x <maximum number of iterations> \-k <optional number of initial clusters to sample from input vectors> \-cd <optional convergence delta. Default is 0.5> \-ow <overwrite output directory if present>-cl <run input vector clustering after computing Clusters>-e <emit vectors to most likely cluster during clustering>-t <threshold to use for clustering if -e is false>-xm <execution method: sequential or mapreduce>

Note: if the -k argument is supplied, any clusters in the -c directory will be overwritten and -k random points will be sampled from the input vectors to become the initial cluster centers.

Invocation using Java involves supplying the following arguments:

  1. input: a file path string to a directory containing the input data set a SequenceFile(WritableComparable, VectorWritable). The sequence file key is not used.
  2. clustersIn: a file path string to a directory containing the initial clusters, a SequenceFile(key, SoftCluster | Cluster | Canopy). Fuzzy k-Means SoftClusters, k-Means Clusters and Canopy Canopies may be used for the initial clusters.
  3. output: a file path string to an empty directory which is used for all output from the algorithm.
  4. measure: the fully-qualified class name of an instance of DistanceMeasure which will be used for the clustering.
  5. convergence: a double value used to determine if the algorithm has converged (clusters have not moved more than the value in the last iteration)
  6. max-iterations: the maximum number of iterations to run, independent of the convergence specified
  7. m: the "fuzzyness" argument, a double > 1. For m equal to 2, this is equivalent to normalising the coefficient linearly to make their sum 1. When m is close to 1, then the cluster center closest to the point is given much more weight than the others, and the algorithm is similar to k-means.
  8. runClustering: a boolean indicating, if true, that the clustering step is to be executed after clusters have been determined.
  9. emitMostLikely: a boolean indicating, if true, that the clustering step should only emit the most likely cluster for each clustered point.
  10. threshold: a double indicating, if emitMostLikely is false, the cluster probability threshold used for emitting multiple clusters for each point. A value of 0 will emit all clusters with their associated probabilities for each vector.
  11. runSequential: a boolean indicating, if true, that the algorithm is to use the sequential reference implementation running in memory.

After running the algorithm, the output directory will contain: 1. clusters-N: directories containing SequenceFiles(Text, SoftCluster) produced by the algorithm for each iteration. The Text key is a cluster identifier string. 1. clusteredPoints: (if runClustering enabled) a directory containing SequenceFile(IntWritable, WeightedVectorWritable). The IntWritable key is the clusterId. The WeightedVectorWritable value is a bean containing a double weight and a VectorWritable vector where the weights are computed as 1/(1+distance) where the distance is between the cluster center and the vector using the chosen DistanceMeasure.

Examples

The following images illustrate Fuzzy k-Means clustering applied to a set of randomly-generated 2-d data points. The points are generated using a normal distribution centered at a mean location and with a constant standard deviation. See the README file in the /examples/src/main/java/org/apache/mahout/clustering/display/README.txt for details on running similar examples.

The points are generated as follows:

  • 500 samples m=[1.0, 1.0](1.0,-1.0.html) sd=3.0
  • 300 samples m=[1.0, 0.0](1.0,-0.0.html) sd=0.5
  • 300 samples m=[0.0, 2.0](0.0,-2.0.html) sd=0.1

In the first image, the points are plotted and the 3-sigma boundaries of their generator are superimposed.

fuzzy

In the second image, the resulting clusters (k=3) are shown superimposed upon the sample data. As Fuzzy k-Means is an iterative algorithm, the centers of the clusters in each recent iteration are shown using different colors. Bold red is the final clustering and previous iterations are shown in [orange, yellow, green, blue, violet and gray](orange,-yellow,-green,-blue,-violet-and-gray.html) . Although it misses a lot of the points and cannot capture the original, superimposed cluster centers, it does a decent job of clustering this data.

fuzzy

The third image shows the results of running Fuzzy k-Means on a different data set which is generated using asymmetrical standard deviations. Fuzzy k-Means does a fair job handling this data set as well.

fuzzy


这篇关于FuzzyKmeans的Mahout实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072722

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja