Hazelcast 分布式缓存 在Seatunnel中的使用

2024-06-18 12:44

本文主要是介绍Hazelcast 分布式缓存 在Seatunnel中的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、背景

最近在调研seatunnel的时候,发现新版的seatunnel提供了一个web服务,可以用于图形化的创建数据同步任务,然后管理任务。这里面有个日志模块,可以查看任务的执行状态。其中有个取读数据条数和同步数据条数。很好奇这个数据是怎么来的。跟踪源码发现Hazelcast。所以对Hazelcast进行了研究。

2、Hazelcast是什么

Hazelcast是一个开源的分布式内存数据网格(In-Memory Data Grid,简称IMDG)解决方案,主要用于分布式计算和缓存

  • 分布式数据结构:Hazelcast提供了一系列分布式数据结构,如Map、List、Set、Queue等,可以在集群中进行分布式存储和访问。
  • 缓存:Hazelcast提供了分布式缓存功能,可以将数据存储在内存中,以提供快速的访问速度。它支持多种缓存策略,如LRU(Least Recently Used)、LFU(Least Frequently Used)和TTL(Time to Live)等。
  • 分布式计算:Hazelcast支持将计算任务分布到集群中的多个节点上进行并行处理,提高应用程序的处理能力。
  • 高可靠性:Hazelcast使用分布式复制和故障转移机制,确保数据的可靠性和高可用性。它具有自动故障检测和恢复机制,可以在节点故障时自动迁移数据和任务。
  • 扩展性:Hazelcast可以方便地进行水平扩展,通过添加更多的节点来增加集群的处理能力。它支持动态添加和移除节点,而无需停止应用程序。
  • 集成性:Hazelcast提供了与各种应用程序和框架的集成,如Spring、Hibernate、JCache等。它还支持与其他分布式系统的集成,如Apache Kafka、Apache Ignite等。
  • 多语言支持:Hazelcast提供了对多种编程语言的支持,包括Java、C#、C++、Python和Node.js等

3、应用场景

  • 缓存:Hazelcast可以作为高性能的分布式缓存解决方案,用于缓存应用程序中的热点数据。
  • 分布式计算:Hazelcast提供了分布式计算框架,可以将计算任务分布到集群中的多个节点上进行并行处理,适用于金融、电信、电子商务等行业。
  • 实时数据处理:Hazelcast可以处理实时数据流,支持数据的实时处理和分析,适用于构建实时应用,如实时监控系统、实时推荐系统等。
  • 分布式会话管理:Hazelcast可以用于管理分布式会话,实现会话的共享和负载均衡。
  • 分布式数据存储:Hazelcast可以作为分布式数据存储解决方案,用于在多个节点间共享数据。

4、与Redis对比

可以看到Hazelcast可以理解为一个NoSQL,那就不得不说我们用的最多的Redis了。两者都提供了丰富的数据接口,比如map、list等等。那为什么不直接用Redis呢。我理解有下边几个方面的原因:

  1. 使用Redis需要额外的环境搭建,而Hazelcast如果使用内嵌的方式,则不需要额外的组件引入,做到了开箱即用。
  2. Hazelcast用的是应用服务器自身的内存,扩展性强,不需要外部内存(有点类似Caffeine)。
  3. Hazelcast对过期时间的支持没有Redis那么灵活。
  4. Hazelcast可以进行分布式计算。我们将数据存入到多个节点,通过分布式计算的api,从多个节点上读取数据,然后计算并返回。这也算是相较Redis的一个优势。
  5. Redis可以供多个应用使用共享数据,与应用解耦。Hazelcast一般使用需要嵌入应用。

如果不考虑分布式计算等场景,完全可以看那个方便。如果公司没有基础架构,并且是自己业务线的产品。那完全可以使用Hazelcast。免去了Redis的搭建、运维、管理等环境。否则还是老老实实的用Redis吧。

但是如果存在实时流式处理,那么使用Hazelcast的分布式特性是个不错的选择。比如咱们做一个监控系统,需要处理很多业务系统的数据,总不能单纯在Redis或者Mysql或者单机内存中处理吧。可以考虑试试Hazelcast。

5、怎么用

上边说了一堆的理论,说到底怎么用呢,这里以SpringBoot嵌入式为例。

  1. maven中添加依赖
    <dependency>  <groupId>com.hazelcast</groupId>  <artifactId>hazelcast</artifactId>  <version>你的Hazelcast版本号</version>  
    </dependency>  <!-- Hazelcast Spring Boot 集成(如果需要) -->  
    <dependency>  <groupId>com.hazelcast</groupId>  <artifactId>hazelcast-spring-boot</artifactId>  <version>你的Hazelcast Spring Boot集成版本号</version>  
    </dependency> 
  2. 代码
    import com.hazelcast.core.HazelcastInstance;  
    import com.hazelcast.map.IMap;  
    import org.springframework.beans.factory.annotation.Autowired;  
    import org.springframework.stereotype.Component;  @Component  
    public class HazelcastService {  @Autowired  private HazelcastInstance hazelcastInstance;  public void putData() {  IMap<String, String> map = hazelcastInstance.getMap("my-map");  map.put("key1", "value1");  }  public String getData(String key) {  IMap<String, String> map = hazelcastInstance.getMap("my-map");  return map.get(key);  }  
    }
  3. 启动成功
    分别启动两个服务,可以看到有两个Hazelcast节点组成的集群

6、源码

源码我想从两个方面去看

1、seatunnel-web提供的查看监控

  • 找到查看日志接口
@RequestMapping("/seatunnel/api/v1/task")
@RestController
public class TaskInstanceController {@Autowired ITaskInstanceService<SeaTunnelJobInstanceDto> taskInstanceService;@GetMapping("/jobMetrics")@ApiOperation(value = "get the jobMetrics list ", httpMethod = "GET")public Result<PageInfo<SeaTunnelJobInstanceDto>> getTaskInstanceList(@RequestAttribute(name = "userId") Integer userId,@RequestParam(name = "jobDefineName", required = false) String jobDefineName,@RequestParam(name = "executorName", required = false) String executorName,@RequestParam(name = "stateType", required = false) String stateType,@RequestParam(name = "startDate", required = false) String startTime,@RequestParam(name = "endDate", required = false) String endTime,@RequestParam("syncTaskType") String syncTaskType,@RequestParam("pageNo") Integer pageNo,@RequestParam("pageSize") Integer pageSize) {return taskInstanceService.getSyncTaskInstancePaging(userId,jobDefineName,executorName,stateType,startTime,endTime,syncTaskType,pageNo,pageSize);}
}
  • 进入getSyncTaskInstancePaging方法
public Result<PageInfo<SeaTunnelJobInstanceDto>> getSyncTaskInstancePaging(Integer userId,String jobDefineName,String executorName,String stateType,String startTime,String endTime,String syncTaskType,Integer pageNo,Integer pageSize) {JobDefinition jobDefinition = null;IPage<SeaTunnelJobInstanceDto> jobInstanceIPage;if (jobDefineName != null) {jobDefinition = jobDefinitionDao.getJobByName(jobDefineName);}Result<PageInfo<SeaTunnelJobInstanceDto>> result = new Result<>();PageInfo<SeaTunnelJobInstanceDto> pageInfo = new PageInfo<>(pageNo, pageSize);result.setData(pageInfo);baseService.putMsg(result, Status.SUCCESS);Date startDate = dateConverter(startTime);Date endDate = dateConverter(endTime);if (jobDefinition != null) {jobInstanceIPage =jobInstanceDao.queryJobInstanceListPaging(new Page<>(pageNo, pageSize),startDate,endDate,jobDefinition.getId(),syncTaskType);} else {jobInstanceIPage =jobInstanceDao.queryJobInstanceListPaging(new Page<>(pageNo, pageSize), startDate, endDate, null, syncTaskType);}List<SeaTunnelJobInstanceDto> records = jobInstanceIPage.getRecords();if (CollectionUtils.isEmpty(records)) {return result;}addJobDefineNameToResult(records);addRunningTimeToResult(records);// 关键代码,上边都是从本地数据库中获取的,这里会去Hazelcast中获取数据,并更新本地数据jobPipelineSummaryMetrics(records, syncTaskType, userId);pageInfo.setTotal((int) jobInstanceIPage.getTotal());pageInfo.setTotalList(records);result.setData(pageInfo);return result;}
  • 进入代码jobPipelineSummaryMetrics(records, syncTaskType, userId);
     
private void jobPipelineSummaryMetrics(List<SeaTunnelJobInstanceDto> records, String syncTaskType, Integer userId) {try {ArrayList<Long> jobInstanceIdList = new ArrayList<>();HashMap<Long, Long> jobInstanceIdAndJobEngineIdMap = new HashMap<>();for (SeaTunnelJobInstanceDto jobInstance : records) {if (jobInstance.getId() != null && jobInstance.getJobEngineId() != null) {jobInstanceIdList.add(jobInstance.getId());jobInstanceIdAndJobEngineIdMap.put(jobInstance.getId(), Long.valueOf(jobInstance.getJobEngineId()));}}Map<Long, JobSummaryMetricsRes> jobSummaryMetrics =// 获取每条日志数据的监控数据jobMetricsService.getALLJobSummaryMetrics(userId,jobInstanceIdAndJobEngineIdMap,jobInstanceIdList,syncTaskType);for (SeaTunnelJobInstanceDto taskInstance : records) {if (jobSummaryMetrics.get(taskInstance.getId()) != null) {taskInstance.setWriteRowCount(jobSummaryMetrics.get(taskInstance.getId()).getWriteRowCount());taskInstance.setReadRowCount(jobSummaryMetrics.get(taskInstance.getId()).getReadRowCount());}}} catch (Exception e) {for (SeaTunnelJobInstanceDto taskInstance : records) {log.error("instance {} {} set instance and engine id error", taskInstance.getId(), e);}}}
  • 进入jobMetricsService.getALLJobSummaryMetrics( userId,jobInstanceIdAndJobEngineIdMap, jobInstanceIdList, syncTaskType);
     
@Overridepublic Map<Long, JobSummaryMetricsRes> getALLJobSummaryMetrics(@NonNull Integer userId,@NonNull Map<Long, Long> jobInstanceIdAndJobEngineIdMap,@NonNull List<Long> jobInstanceIdList,@NonNull String syncTaskType) {log.info("jobInstanceIdAndJobEngineIdMap={}", jobInstanceIdAndJobEngineIdMap);funcPermissionCheck(SeatunnelFuncPermissionKeyConstant.JOB_METRICS_SUMMARY, userId);List<JobInstance> allJobInstance = jobInstanceDao.getAllJobInstance(jobInstanceIdList);if (allJobInstance.isEmpty()) {log.warn("getALLJobSummaryMetrics : allJobInstance is empty, task id list is {}",jobInstanceIdList);return new HashMap<>();}Map<Long, JobSummaryMetricsRes> result = null;Map<Long, HashMap<Integer, JobMetrics>> allRunningJobMetricsFromEngine =// 从Hazelcast集群节点中获取监控数据getAllRunningJobMetricsFromEngine(allJobInstance.get(0).getEngineName(),allJobInstance.get(0).getEngineVersion());// 通过不同的方式获取数据if (syncTaskType.equals("BATCH")) {result =getMatricsListIfTaskTypeIsBatch(allJobInstance,userId,allRunningJobMetricsFromEngine,jobInstanceIdAndJobEngineIdMap);} else if (syncTaskType.equals("STREAMING")) {result =getMatricsListIfTaskTypeIsStreaming(allJobInstance,userId,allRunningJobMetricsFromEngine,jobInstanceIdAndJobEngineIdMap);}log.info("result is {}", result == null ? "null" : result.toString());return result;}
  • 进入方法getAllRunningJobMetricsFromEngine(allJobInstance.get(0).getEngineName(),allJobInstance.get(0).getEngineVersion());
     
private Map<Long, HashMap<Integer, JobMetrics>> getAllRunningJobMetricsFromEngine(String engineName, String engineVersion) {Engine engine = new Engine(engineName, engineVersion);IEngineMetricsExtractor engineMetricsExtractor =(new EngineMetricsExtractorFactory(engine)).getEngineMetricsExtractor();// 看名字就知道这个是获取任务的监控数据的return engineMetricsExtractor.getAllRunningJobMetrics();}
  • 进入engineMetricsExtractor.getAllRunningJobMetrics();
     
@Overridepublic Map<Long, HashMap<Integer, JobMetrics>> getAllRunningJobMetrics() {HashMap<Long, HashMap<Integer, JobMetrics>> allRunningJobMetricsHashMap = new HashMap<>();try {
// 是不是很熟悉。seatunnelproxy,一看就是从这里开始真正和Hazelcast交互,获取数据了String allJobMetricsContent = seaTunnelEngineProxy.getAllRunningJobMetricsContent();if (StringUtils.isEmpty(allJobMetricsContent)) {return new HashMap<>();}JsonNode jsonNode = JsonUtils.stringToJsonNode(allJobMetricsContent);Iterator<JsonNode> iterator = jsonNode.iterator();while (iterator.hasNext()) {LinkedHashMap<Integer, JobMetrics> metricsMap = new LinkedHashMap();JsonNode next = iterator.next();JsonNode sourceReceivedCount = next.get("metrics").get("SourceReceivedCount");Long jobEngineId = 0L;if (sourceReceivedCount != null && sourceReceivedCount.isArray()) {for (JsonNode node : sourceReceivedCount) {jobEngineId = node.get("tags").get("jobId").asLong();Integer pipelineId = node.get("tags").get("pipelineId").asInt();JobMetrics currPipelineMetrics =getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);currPipelineMetrics.setReadRowCount(currPipelineMetrics.getReadRowCount() + node.get("value").asLong());}}JsonNode sinkWriteCount = next.get("metrics").get("SinkWriteCount");if (sinkWriteCount != null && sinkWriteCount.isArray()) {for (JsonNode node : sinkWriteCount) {jobEngineId = node.get("tags").get("jobId").asLong();Integer pipelineId = node.get("tags").get("pipelineId").asInt();JobMetrics currPipelineMetrics =getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);currPipelineMetrics.setWriteRowCount(currPipelineMetrics.getWriteRowCount()+ node.get("value").asLong());}}JsonNode sinkWriteQPS = next.get("metrics").get("SinkWriteQPS");if (sinkWriteQPS != null && sinkWriteQPS.isArray()) {for (JsonNode node : sinkWriteQPS) {Integer pipelineId = node.get("tags").get("pipelineId").asInt();JobMetrics currPipelineMetrics =getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);currPipelineMetrics.setWriteQps(currPipelineMetrics.getWriteQps()+ (new Double(node.get("value").asDouble())).longValue());}}JsonNode sourceReceivedQPS = next.get("metrics").get("SourceReceivedQPS");if (sourceReceivedQPS != null && sourceReceivedQPS.isArray()) {for (JsonNode node : sourceReceivedQPS) {Integer pipelineId = node.get("tags").get("pipelineId").asInt();JobMetrics currPipelineMetrics =getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);currPipelineMetrics.setReadQps(currPipelineMetrics.getReadQps()+ (new Double(node.get("value").asDouble())).longValue());}}JsonNode cdcRecordEmitDelay = next.get("metrics").get("CDCRecordEmitDelay");if (cdcRecordEmitDelay != null && cdcRecordEmitDelay.isArray()) {Map<Integer, List<Long>> dataMap = new HashMap<>();for (JsonNode node : cdcRecordEmitDelay) {Integer pipelineId = node.get("tags").get("pipelineId").asInt();long value = node.get("value").asLong();dataMap.computeIfAbsent(pipelineId, n -> new ArrayList<>()).add(value);}dataMap.forEach((key, value) -> {JobMetrics currPipelineMetrics =getOrCreatePipelineMetricsMapStatusRunning(metricsMap, key);OptionalDouble average =value.stream().mapToDouble(a -> a).average();currPipelineMetrics.setRecordDelay(Double.valueOf(average.isPresent()? average.getAsDouble(): 0).longValue());});}log.info("jobEngineId={},metricsMap={}", jobEngineId, metricsMap);allRunningJobMetricsHashMap.put(jobEngineId, metricsMap);}} catch (Exception e) {e.printStackTrace();}return allRunningJobMetricsHashMap;}
  • 到这里如果有实际操作过seatunnel-web界面的同学们肯定知道,这个基本就已经触及监控数据的来源了。
  • 进入seaTunnelEngineProxy.getAllRunningJobMetricsContent();
     
public String getAllRunningJobMetricsContent() {SeaTunnelClient seaTunnelClient = new SeaTunnelClient(clientConfig);try {return seaTunnelClient.getJobClient().getRunningJobMetrics();} finally {seaTunnelClient.close();}}
  • 代码很简单,没啥说的继续跟踪
     
public String getRunningJobMetrics() {return (String)this.hazelcastClient.requestOnMasterAndDecodeResponse(SeaTunnelGetRunningJobMetricsCodec.encodeRequest(), SeaTunnelGetRunningJobMetricsCodec::decodeResponse);}
  • hazelcastClient,是不是眼熟。是的,seatunnel对hazelcast的调用,封装了很深。马上就胜利了,继续跟代码
     
public <S> S requestOnMasterAndDecodeResponse(@NonNull ClientMessage request, @NonNull Function<ClientMessage, Object> decoder) {if (request == null) {throw new NullPointerException("request is marked non-null but is null");} else if (decoder == null) {throw new NullPointerException("decoder is marked non-null but is null");} else {UUID masterUuid = this.hazelcastClient.getClientClusterService().getMasterMember().getUuid();return this.requestAndDecodeResponse(masterUuid, request, decoder);}}
  • 获取到我们要从那个hazelcast节点获取数据的信息,然后去调用
     
public <S> S requestAndDecodeResponse(@NonNull UUID uuid, @NonNull ClientMessage request, @NonNull Function<ClientMessage, Object> decoder) {if (uuid == null) {throw new NullPointerException("uuid is marked non-null but is null");} else if (request == null) {throw new NullPointerException("request is marked non-null but is null");} else if (decoder == null) {throw new NullPointerException("decoder is marked non-null but is null");} else {ClientInvocation invocation = new ClientInvocation(this.hazelcastClient, request, (Object)null, uuid);try {ClientMessage response = (ClientMessage)invocation.invoke().get();return this.serializationService.toObject(decoder.apply(response));} catch (InterruptedException var6) {Thread.currentThread().interrupt();return null;} catch (Throwable var7) {throw ExceptionUtil.rethrow(var7);}}}
  • 着重记忆一下ClientInvocation和ClientMessage。因为在跟踪hazelcase-api的代码的时候,就是用的这里。
  • 在下边就是调用hazelcast的客户端,发送请求,然后get阻塞,直到数据返回。

2、Hazelcast-api

  • hazelcast的api调用,我们以下面这段代码为入口开始看源码。
import com.hazelcast.core.HazelcastInstance;  
import com.hazelcast.map.IMap;  
import org.springframework.beans.factory.annotation.Autowired;  
import org.springframework.stereotype.Component;  @Component  
public class HazelcastService {  @Autowired  private HazelcastInstance hazelcastInstance;  public void putData() {  IMap<String, String> map = hazelcastInstance.getMap("my-map");  map.put("key1", "value1");  }  public String getData(String key) {  IMap<String, String> map = hazelcastInstance.getMap("my-map");  return map.get(key);  }  
}
  • 可以看到hazelcast的使用基本和java的数据结构使用一样。所以如果我们要使用hazelcast还是很方便入手的。
  • 进入hazelcast封装的map的put方法
     
@Overridepublic V get(@Nonnull Object key) {checkNotNull(key, NULL_KEY_IS_NOT_ALLOWED);return toObject(getInternal(key));}
  • 进入getInternal方法
     
protected Object getInternal(Object key) {// TODO: action for read-backup true is not well testedData keyData = toDataWithStrategy(key);if (mapConfig.isReadBackupData()) {Object fromBackup = readBackupDataOrNull(keyData);if (fromBackup != null) {return fromBackup;}}MapOperation operation = operationProvider.createGetOperation(name, keyData);operation.setThreadId(getThreadId());return invokeOperation(keyData, operation);}
  • 将参数封装为了hazelcast的map数据结构,并调用操作方法
     
private Object invokeOperation(Data key, MapOperation operation) {int partitionId = partitionService.getPartitionId(key);operation.setThreadId(getThreadId());try {Object result;if (statisticsEnabled) {long startTimeNanos = Timer.nanos();Future future = operationService.createInvocationBuilder(SERVICE_NAME, operation, partitionId).setResultDeserialized(false).invoke();result = future.get();incrementOperationStats(operation, localMapStats, startTimeNanos);} else {Future future = operationService.createInvocationBuilder(SERVICE_NAME, operation, partitionId).setResultDeserialized(false).invoke();result = future.get();}return result;} catch (Throwable t) {throw rethrow(t);}}
  • 执行方法,并返回了一个InvocationFuture,这个InvocationFuture对象是集成了CompletableFuture的一个future,所以如果需要,也可以使用多线程编排,执行复杂查询的。
     
@Overridepublic InvocationFuture invoke() {op.setServiceName(serviceName);Invocation invocation;if (target == null) {op.setPartitionId(partitionId).setReplicaIndex(replicaIndex);invocation = new PartitionInvocation(context, op, doneCallback, tryCount, tryPauseMillis, callTimeout, resultDeserialized,failOnIndeterminateOperationState, connectionManager);} else {invocation = new TargetInvocation(context, op, target, doneCallback, tryCount, tryPauseMillis,callTimeout, resultDeserialized, connectionManager);}return async? invocation.invokeAsync(): invocation.invoke();}
  • 可以看到真正去执行的是不同类型的Invocation。并且可以根据是同步还是异步,调用不同的执行方法,我们直接看invoke方法。
     
private void invoke0(boolean isAsync) {if (invokeCount > 0) {throw new IllegalStateException("This invocation is already in progress");} else if (isActive()) {throw new IllegalStateException("Attempt to reuse the same operation in multiple invocations. Operation is " + op);}try {setCallTimeout(op, callTimeoutMillis);setCallerAddress(op, context.thisAddress);op.setNodeEngine(context.nodeEngine);boolean isAllowed = context.operationExecutor.isInvocationAllowed(op, isAsync);if (!isAllowed && !isMigrationOperation(op)) {throw new IllegalThreadStateException(Thread.currentThread() + " cannot make remote call: " + op);}doInvoke(isAsync);} catch (Exception e) {handleInvocationException(e);}}
  • 继续进入doInvoke方法
     
private void doInvoke(boolean isAsync) {if (!engineActive()) {return;}invokeCount++;setInvocationTime(op, context.clusterClock.getClusterTime());// We'll initialize the invocation before registering it. Invocation monitor iterates over// registered invocations and it must observe completely initialized invocations.Exception initializationFailure = null;try {initInvocationTarget();} catch (Exception e) {// We'll keep initialization failure and notify invocation with this failure// after invocation is registered to the invocation registry.initializationFailure = e;}if (!context.invocationRegistry.register(this)) {return;}if (initializationFailure != null) {notifyError(initializationFailure);return;}if (isLocal()) {doInvokeLocal(isAsync);} else {doInvokeRemote();}}
  • 如果是本地调用,进入doInvokeLocal。如果是远程调用进入doInvokeRemote。如果是springboot直接引入的情况下,进入本地调用
  • 调用远程的hazelcast集群的。进入doInvokeRemote方法。
  • 例子中是本地调用,所以进入doInvokeLocal,这里的代码本文就不继续跟进去,如果感兴趣可以debug进去看看,大概的逻辑是调用execute方法,然后将MapOperation(Operation对象)放到一个队列中,线程池异步执行,我们着重看下MapOperation。
     
public abstract class MapOperation extends AbstractNamedOperationimplements IdentifiedDataSerializable, ServiceNamespaceAware {private static final boolean ASSERTION_ENABLED = MapOperation.class.desiredAssertionStatus();protected transient MapService mapService;protected transient RecordStore<Record> recordStore;protected transient MapContainer mapContainer;protected transient MapServiceContext mapServiceContext;protected transient MapEventPublisher mapEventPublisher;protected transient boolean createRecordStoreOnDemand = true;protected transient boolean disposeDeferredBlocks = true;private transient boolean canPublishWanEvent;public MapOperation() {}public MapOperation(String name) {this.name = name;}@Overridepublic final void beforeRun() throws Exception {super.beforeRun();mapService = getService();mapServiceContext = mapService.getMapServiceContext();mapEventPublisher = mapServiceContext.getMapEventPublisher();try {recordStore = getRecordStoreOrNull();if (recordStore == null) {mapContainer = mapServiceContext.getMapContainer(name);} else {mapContainer = recordStore.getMapContainer();}} catch (Throwable t) {disposeDeferredBlocks();throw rethrow(t, Exception.class);}canPublishWanEvent = canPublishWanEvent(mapContainer);assertNativeMapOnPartitionThread();innerBeforeRun();}protected void innerBeforeRun() throws Exception {if (recordStore != null) {recordStore.beforeOperation();}// Concrete classes can override this method.}@Overridepublic final void run() {try {runInternal();} catch (NativeOutOfMemoryError e) {rerunWithForcedEviction();}}protected void runInternal() {// Intentionally empty method body.// Concrete classes can override this method.}private void rerunWithForcedEviction() {try {runWithForcedEvictionStrategies(this);} catch (NativeOutOfMemoryError e) {disposeDeferredBlocks();throw e;}}@Overridepublic final void afterRun() throws Exception {afterRunInternal();disposeDeferredBlocks();super.afterRun();}protected void afterRunInternal() {// Intentionally empty method body.// Concrete classes can override this method.}@Overridepublic void afterRunFinal() {if (recordStore != null) {recordStore.afterOperation();}}protected void assertNativeMapOnPartitionThread() {if (!ASSERTION_ENABLED) {return;}assert mapContainer.getMapConfig().getInMemoryFormat() != NATIVE|| getPartitionId() != GENERIC_PARTITION_ID: "Native memory backed map operations are not allowed to run on GENERIC_PARTITION_ID";}ILogger logger() {return getLogger();}protected final CallerProvenance getCallerProvenance() {return disableWanReplicationEvent() ? CallerProvenance.WAN : CallerProvenance.NOT_WAN;}private RecordStore getRecordStoreOrNull() {int partitionId = getPartitionId();if (partitionId == -1) {return null;}PartitionContainer partitionContainer = mapServiceContext.getPartitionContainer(partitionId);if (createRecordStoreOnDemand) {return partitionContainer.getRecordStore(name);} else {return partitionContainer.getExistingRecordStore(name);}}@Overridepublic void onExecutionFailure(Throwable e) {disposeDeferredBlocks();super.onExecutionFailure(e);}@Overridepublic void logError(Throwable e) {ILogger logger = getLogger();if (e instanceof NativeOutOfMemoryError) {Level level = this instanceof BackupOperation ? Level.FINEST : Level.WARNING;logger.log(level, "Cannot complete operation! -> " + e.getMessage());} else {// we need to introduce a proper method to handle operation failures (at the moment// this is the only place where we can dispose native memory allocations on failure)disposeDeferredBlocks();super.logError(e);}}void disposeDeferredBlocks() {if (!disposeDeferredBlocks|| recordStore == null|| recordStore.getInMemoryFormat() != NATIVE) {return;}recordStore.disposeDeferredBlocks();}private boolean canPublishWanEvent(MapContainer mapContainer) {boolean canPublishWanEvent = mapContainer.isWanReplicationEnabled()&& !disableWanReplicationEvent();if (canPublishWanEvent) {mapContainer.getWanReplicationDelegate().doPrepublicationChecks();}return canPublishWanEvent;}@Overridepublic String getServiceName() {return MapService.SERVICE_NAME;}public boolean isPostProcessing(RecordStore recordStore) {MapDataStore mapDataStore = recordStore.getMapDataStore();return mapDataStore.isPostProcessingMapStore()|| !mapContainer.getInterceptorRegistry().getInterceptors().isEmpty();}public void setThreadId(long threadId) {throw new UnsupportedOperationException();}public long getThreadId() {throw new UnsupportedOperationException();}protected final void invalidateNearCache(List<Data> keys) {if (!mapContainer.hasInvalidationListener() || isEmpty(keys)) {return;}Invalidator invalidator = getNearCacheInvalidator();for (Data key : keys) {invalidator.invalidateKey(key, name, getCallerUuid());}}// TODO: improve here it's possible that client cannot manage to attach listenerpublic final void invalidateNearCache(Data key) {if (!mapContainer.hasInvalidationListener() || key == null) {return;}Invalidator invalidator = getNearCacheInvalidator();invalidator.invalidateKey(key, name, getCallerUuid());}/*** This method helps to add clearing Near Cache event only from* one-partition which matches partitionId of the map name.*/protected final void invalidateAllKeysInNearCaches() {if (mapContainer.hasInvalidationListener()) {int partitionId = getPartitionId();Invalidator invalidator = getNearCacheInvalidator();if (partitionId == getNodeEngine().getPartitionService().getPartitionId(name)) {invalidator.invalidateAllKeys(name, getCallerUuid());} else {invalidator.forceIncrementSequence(name, getPartitionId());}}}private Invalidator getNearCacheInvalidator() {MapNearCacheManager mapNearCacheManager = mapServiceContext.getMapNearCacheManager();return mapNearCacheManager.getInvalidator();}protected final void evict(Data justAddedKey) {if (mapContainer.getEvictor() == Evictor.NULL_EVICTOR) {return;}recordStore.evictEntries(justAddedKey);disposeDeferredBlocks();}@Overridepublic int getFactoryId() {return MapDataSerializerHook.F_ID;}@Overridepublic ObjectNamespace getServiceNamespace() {MapContainer container = mapContainer;if (container == null) {MapService service = getService();container = service.getMapServiceContext().getMapContainer(name);}return container.getObjectNamespace();}// for testing onlypublic void setMapService(MapService mapService) {this.mapService = mapService;}// for testing onlypublic void setMapContainer(MapContainer mapContainer) {this.mapContainer = mapContainer;}protected final void publishWanUpdate(Data dataKey, Object value) {publishWanUpdateInternal(dataKey, value, false);}private void publishWanUpdateInternal(Data dataKey, Object value, boolean hasLoadProvenance) {if (!canPublishWanEvent) {return;}Record<Object> record = recordStore.getRecord(dataKey);if (record == null) {return;}Data dataValue = toHeapData(mapServiceContext.toData(value));ExpiryMetadata expiryMetadata = recordStore.getExpirySystem().getExpiryMetadata(dataKey);WanMapEntryView<Object, Object> entryView = createWanEntryView(toHeapData(dataKey), dataValue, record, expiryMetadata,getNodeEngine().getSerializationService());mapEventPublisher.publishWanUpdate(name, entryView, hasLoadProvenance);}protected final void publishLoadAsWanUpdate(Data dataKey, Object value) {publishWanUpdateInternal(dataKey, value, true);}protected final void publishWanRemove(@Nonnull Data dataKey) {if (!canPublishWanEvent) {return;}mapEventPublisher.publishWanRemove(name, toHeapData(dataKey));}protected boolean disableWanReplicationEvent() {return false;}protected final TxnReservedCapacityCounter wbqCapacityCounter() {return recordStore.getMapDataStore().getTxnReservedCapacityCounter();}protected final Data getValueOrPostProcessedValue(Record record, Data dataValue) {if (!isPostProcessing(recordStore)) {return dataValue;}return mapServiceContext.toData(record.getValue());}@Overridepublic TenantControl getTenantControl() {return getNodeEngine().getTenantControlService().getTenantControl(MapService.SERVICE_NAME, name);}@Overridepublic boolean requiresTenantContext() {return true;}
}
  • 既然要线程异步去执行,所以它肯定要实现run方法,所以找到run方法,进入runInternal。实现方法很多,找到map包相关的类。
     
@Overrideprotected void runInternal() {Object currentValue = recordStore.get(dataKey, false, getCallerAddress());if (noCopyReadAllowed(currentValue)) {// in case of a 'remote' call (e.g a client call) we prevent making// an on-heap copy of the off-heap dataresult = (Data) currentValue;} else {// in case of a local call, we do make a copy, so we can safely share// it with e.g. near cache invalidationresult = mapService.getMapServiceContext().toData(currentValue);}}
  • 这里基本就是获取到hazelcast管理的内存中数据的地方,不再一一debug,一路向下找到代码
     
public V get(Object key) {int hash = hashOf(key);return segmentFor(hash).get(key, hash);}
  • 怎么样,熟悉吧。java的map调用是不是也是这样,先hash找到位置,在获取数据。其实这里的hash和map的hash有一些区别。这是由于hazelcast的架构决定的,如果对原理架构感兴趣可以百度搜一搜,很多。这里大概提一嘴,有一个分片的概念,put的时候会hash到不同的分区(分片)。这也是hazelcast分布式的原理。

7、结语

本文只是介绍了hazelcast的最基本用法,如果按照案例中的使用,完全可以用redis或者本地缓存。但是如果有了更高级(实际中的使用),那么hazelcast的分布式计算特性还是很好用的。源码也只是分析了本地的调用。如果感兴趣其实可以debug跟进去看下远程调用的方式。其实想想本质还是一样,远程调用就需要1、发现节点;2、注册节点;3、网络调用其他节点。而seatunnel的调用就相对来说更高级一些,它进行了一系列的封装。最后也还是网络调用其他节点。然后返回future阻塞等待返回结果,由于是内存级别的,处理特别快。

对了差点忘记一点,一直在说分布式特性。本文只说了单纯作为缓存使用get、put方法。这里大概介绍下分布式api的使用

IExecutorService executorService = hazelcastInstance.getExecutorService("myExecutor");  
Runnable task = () -> {  // 这里是任务的逻辑  System.out.println("Executing task on " + hazelcastInstance.getCluster().getLocalMember().getAddress());  
};  
Future<Void> future = executorService.submit(task);  
future.get(); // 等待任务完成

这样就可以查询分布式节点上的数据,然后聚合返回。是不是有点像MapReduce。确实,hazelcast也可以使用MapReduce进行复杂运算,想了解的,也可以去搜一搜看看。

这篇关于Hazelcast 分布式缓存 在Seatunnel中的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072032

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W