本文主要是介绍64位环境下的Armadillo + VS2013 (关于之前以为老兄发表的补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在此,表示对打开下载的文件
安装路径选一个自己找得到的地方,因为后面要用到地址
安装完成后
2、配置mingw-w64环境变量
在桌面找到我的电脑图标->右键->属性->高级系统设置->选择“高级”选项->选择下面“环境变量”
>>Administrator 的用户变量
如果有Path 变量的话直接双击打开变量值栏输入刚刚让你记下的地址
如果没有Path 变量这一项,就新建一项然后再输入地址
3、下载Armadillo(官网:http://arma.sourceforge.net/),得到下面的包;
4、打开VS2013,新建一个win32的工程;
可以将名称命名为armadilloTest
点击完成
32位的lib和64位的lib是有区别的,混用可能会出这样的链接问题,因此,将编译器的编译环境改为x64的
再点击属性
选择VC++目录一项,将包含①目录设置为你解压后,include文件夹的路径 记住,一定是知道include这一级
②将库目录设置为解压后example里的lib文件夹
接着选C/C++里的常规项,设置附加包含目录,同样为上述的include文件夹路径:
选择链接器/常规,将附加库目录设置为上述的lib文件夹路径:
开启工程属性对话框为工程链接所需库文件,包括lapack_win64_MT.lib和 blas_win64_MT.lib,如下图所示:
这里是要手动输入的 注意不要输错了 另外 看清楚自己的文件名,如果不一样,要自己改
开启工程属性对话框为工程添加开启Lapack和blas的预处理定义,如下图所示:
这里同样需要自己手动输入
拷贝lib_win64文件夹下的两个dll文件到目录\armadilloTest\armadilloTest下保证开发环境能够调用到这两个dll,当程序发布后则应该放到可执行文件所在目录或者系统system32目录下。
至此已经完成了所有工程配置工作。
THE END
输入一下代码到运行框里运行一下,看看有没有问题
// armadilloTest.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"
#include <iostream>#include <armadillo>using namespace std;using namespace arma;// Armadillo documentation is available at:// http://arma.sourceforge.net/docs.html//int main(int argc, char** argv)int main(){cout << "Armadillo version: " << arma_version::as_string() << endl;mat A(2, 3); // directly specify the matrix size (elements are uninitialised)cout << "A.n_rows: " << A.n_rows << endl; // .n_rows and .n_cols are read onlycout << "A.n_cols: " << A.n_cols << endl;A(1, 2) = 456.0; // directly access an element (indexing starts at 0)A.print("A:");A = 5.0; // scalars are treated as a 1x1 matrixA.print("A:");A.set_size(4, 5); // change the size (data is not preserved)A.fill(5.0); // set all elements to a particular valueA.print("A:");// endr indicates "end of row"A << 0.165300 << 0.454037 << 0.995795 << 0.124098 << 0.047084 << endr<< 0.688782 << 0.036549 << 0.552848 << 0.937664 << 0.866401 << endr<< 0.348740 << 0.479388 << 0.506228 << 0.145673 << 0.491547 << endr<< 0.148678 << 0.682258 << 0.571154 << 0.874724 << 0.444632 << endr<< 0.245726 << 0.595218 << 0.409327 << 0.367827 << 0.385736 << endr;A.print("A:");// determinantcout << "det(A): " << det(A) << endl;// inversecout << "inv(A): " << endl << inv(A) << endl;// save matrix as a text fileA.save("A.txt", raw_ascii);// load from filemat B;B.load("A.txt");// submatricescout << "B( span(0,2), span(3,4) ):" << endl << B(span(0, 2), span(3, 4)) << endl;cout << "B.row(0): " << endl << B.row(0) << endl;cout << "B.col(1): " << endl << B.col(1) << endl;// transposecout << "B.t(): " << endl << B.t() << endl;// maximum from each column (traverse along rows)cout << "max(B): " << endl << max(B) << endl;// maximum from each row (traverse along columns)cout << "max(B,1): " << endl << max(B, 1) << endl;// maximum value in Bcout << "max(max(B)) = " << max(max(B)) << endl;// sum of each column (traverse along rows)cout << "sum(B): " << endl << sum(B) << endl;// sum of each row (traverse along columns)cout << "sum(B,1) =" << endl << sum(B, 1) << endl;// sum of all elementscout << "accu(B): " << accu(B) << endl;// trace = sum along diagonalcout << "trace(B): " << trace(B) << endl;// generate the identity matrixmat C = eye<mat>(4, 4);// random matrix with values uniformly distributed in the [0,1] intervalmat D = randu<mat>(4, 4);D.print("D:");// row vectors are treated like a matrix with one rowrowvec r;r << 0.59119 << 0.77321 << 0.60275 << 0.35887 << 0.51683;r.print("r:");// column vectors are treated like a matrix with one columnvec q;q << 0.14333 << 0.59478 << 0.14481 << 0.58558 << 0.60809;q.print("q:");// convert matrix to vector; data in matrices is stored column-by-columnvec v = vectorise(A);v.print("v:");// dot or inner productcout << "as_scalar(r*q): " << as_scalar(r*q) << endl;// outer productcout << "q*r: " << endl << q*r << endl;// multiply-and-accumulate operation (no temporary matrices are created)cout << "accu(A % B) = " << accu(A % B) << endl;// example of a compound operationB += 2.0 * A.t();B.print("B:");// imat specifies an integer matriximat AA;imat BB;AA << 1 << 2 << 3 << endr << 4 << 5 << 6 << endr << 7 << 8 << 9;BB << 3 << 2 << 1 << endr << 6 << 5 << 4 << endr << 9 << 8 << 7;// comparison of matrices (element-wise); output of a relational operator is a umatumat ZZ = (AA >= BB);ZZ.print("ZZ:");// cubes ("3D matrices")cube Q(B.n_rows, B.n_cols, 2);Q.slice(0) = B;Q.slice(1) = 2.0 * B;Q.print("Q:");// 2D field of matrices; 3D fields are also supportedfield<mat> F(4, 3);for (uword col = 0; col < F.n_cols; ++col)for (uword row = 0; row < F.n_rows; ++row){F(row, col) = randu<mat>(2, 3); // each element in field<mat> is a matrix}F.print("F:");system("pause");return 0;}
至此,我们就结束了Armadillo的调用演示
谢谢
这篇关于64位环境下的Armadillo + VS2013 (关于之前以为老兄发表的补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!