numpy数组shape相关

2024-06-18 04:38
文章标签 数组 相关 numpy shape

本文主要是介绍numpy数组shape相关,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

numpy数组shape相关操作

    • 数组变形
      • 通过numpy.ndarray.shape查看、修改数组形状
      • 通过numpy.ndarray.flat获取数组的一维迭代器
      • 通过numpy.ndarray.flatten([order='C']) 将获取数组一维数组的副本(返回的是拷贝)
      • 通过numpy.ravel(a, order='C') 将获取数组一维数组(order='C'返回的是视图,order='F'返回的是拷贝)
      • numpy.reshape(a, newshape[, order='C']) 改变数组形状(视图)
    • 数组转置
      • numpy.transpose(a, axes=None)
      • numpy.ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.
    • 增减维度
      • 通过numpy.newaxis增加维度
      • 通过numpy.squeeze(a, axis=None)删除维度
    • 数组拼接
      • numpy.concatenate((a1, a2, ...), axis=0, out=None) 按现有维度拼接
      • numpy.stack(arrays, axis=0, out=None) 增加新的维度进行拼接
      • vstack(tup)、hstack(tup)
    • 数组拆分
      • numpy.split(ary, indices_or_sections, axis=0)
      • vsplit(ary, indices_or_sections)、hsplit(ary, indices_or_sections)
    • 数组复制
      • numpy.tile(A, reps)
      • numpy.repeat(a, repeats, axis=None)

数组变形

通过numpy.ndarray.shape查看、修改数组形状

查看:

 x = np.array([1, 2, 9, 4, 5, 6, 7, 8])print(x.shape)  # (8,)

修改:

x.shape = [2, 4]
print(x)
# [[1 2 9 4]
#  [5 6 7 8]]

通过numpy.ndarray.flat获取数组的一维迭代器

通过numpy.ndarray.flat获取数组的以为迭代器后即可完成通过for等操作遍历数组或修改数组等
for循环遍历数组:

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = x.flat
print(y)
# <numpy.flatiter object at 0x0000020F9BA10C60>
for i in y:print(i, end=' ')
# 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

通过迭代器修改数组:

y[3] = 0
print(end='\n')
print(x)
# [[11 12 13  0 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

通过numpy.ndarray.flatten([order=‘C’]) 将获取数组一维数组的副本(返回的是拷贝)

order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘k’ – 元素在内存中的出现顺序

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = x.flatten()
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#  35]y[3] = 0
print(x)
# [[11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])y = x.flatten(order='F')
print(y)
# [11 16 21 26 31 12 17 22 27 32 13 18 23 28 33 14 19 24 29 34 15 20 25 30
#  35]y[3] = 0
print(x)
# [[11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

通过numpy.ravel(a, order=‘C’) 将获取数组一维数组(order='C’返回的是视图,order='F’返回的是拷贝)

order=‘C’

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = np.ravel(x)
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#  35]y[3] = 0
print(x)
# [[11 12 13  0 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

order=‘F’

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])y = np.ravel(x, order='F')
print(y)
# [11 16 21 26 31 12 17 22 27 32 13 18 23 28 33 14 19 24 29 34 15 20 25 30
#  35]y[3] = 0
print(x)
# [[11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

numpy.reshape(a, newshape[, order=‘C’]) 改变数组形状(视图)

reshape()函数当参数newshape = [rows,-1]时,将根据行数自动确定列数

x = np.arange(12)
y = np.reshape(x, [3, 4])
print(y.dtype)  # int32
print(y)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]y = np.reshape(x, [3, -1])
print(y)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]y = np.reshape(x,[-1,3])
print(y)
# [[ 0  1  2]
#  [ 3  4  5]
#  [ 6  7  8]
#  [ 9 10 11]]

当参数newshape = -1时,表示将数组降为一维

x = np.random.randint(12, size=[2, 2, 3])
print(x)
# [[[11  9  1]
#   [ 1 10  3]]
# 
#  [[ 0  6  1]
#   [ 4 11  3]]]
y = np.reshape(x, -1)
print(y)
# [11  9  1  1 10  3  0  6  1  4 11  3]

数组转置

numpy.transpose(a, axes=None)

x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[6.74 8.46 6.74 5.45 1.25]
#  [3.54 3.49 8.62 1.94 9.92]
#  [5.03 7.22 1.6  8.7  0.43]
#  [7.5  7.31 5.69 9.67 7.65]
#  [1.8  9.52 2.78 5.87 4.14]]
y = x.T
print(y)
# [[6.74 3.54 5.03 7.5  1.8 ]
#  [8.46 3.49 7.22 7.31 9.52]
#  [6.74 8.62 1.6  5.69 2.78]
#  [5.45 1.94 8.7  9.67 5.87]
#  [1.25 9.92 0.43 7.65 4.14]]

numpy.ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.

y = np.transpose(x)
print(y)
# [[6.74 3.54 5.03 7.5  1.8 ]
#  [8.46 3.49 7.22 7.31 9.52]
#  [6.74 8.62 1.6  5.69 2.78]
#  [5.45 1.94 8.7  9.67 5.87]
#  [1.25 9.92 0.43 7.65 4.14]]

增减维度

通过numpy.newaxis增加维度

x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape)  # (8,)
print(x)  # [1 2 9 4 5 6 7 8]y = x[np.newaxis, :]
print(y.shape)  # (1, 8)
print(y)  # [[1 2 9 4 5 6 7 8]]y = x[:, np.newaxis]
print(y.shape)  # (8, 1)
print(y)
# [[1]
#  [2]
#  [9]
#  [4]
#  [5]
#  [6]
#  [7]
#  [8]]

通过numpy.squeeze(a, axis=None)删除维度

numpy.squeeze(a, axis=None) 从数组的形状中删除单维度条目,即把shape中为1的维度去掉。
a表示输入的数组;
axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;

x = np.array([[[0], [1], [2]]])
print(x.shape)  # (1, 3, 1)
print(x)
# [[[0]
#   [1]
#   [2]]]y = np.squeeze(x)
print(y.shape)  # (3,)
print(y)  # [0 1 2]y = np.squeeze(x, axis=0)
print(y.shape)  # (3, 1)
print(y)
# [[0]
#  [1]
#  [2]]y = np.squeeze(x, axis=2)
print(y.shape)  # (1, 3)
print(y)  # [[0 1 2]]y = np.squeeze(x, axis=1)
# ValueError: cannot select an axis to squeeze out which has size not equal to one

数组拼接

numpy.concatenate((a1, a2, …), axis=0, out=None) 按现有维度拼接

x,y在原来的维度上进行拼接:

x = np.array([1, 2, 3])
y = np.array([7, 8, 9])
z = np.concatenate([x, y])
print(z)
# [1 2 3 7 8 9]z = np.concatenate([x, y], axis=0)
print(z)
# [1 2 3 7 8 9]x = np.array([1, 2, 3]).reshape(1, 3)
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.concatenate([x, y])
print(z)
# [[ 1  2  3]
#  [ 7  8  9]]
z = np.concatenate([x, y], axis=0)
print(z)
# [[ 1  2  3]
#  [ 7  8  9]]
z = np.concatenate([x, y], axis=1)
print(z)
# [[ 1  2  3  7  8  9]]

numpy.stack(arrays, axis=0, out=None) 增加新的维度进行拼接

x = np.array([1, 2, 3]).reshape(1, 3)
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.stack([x, y])
print(z.shape)  # (2, 1, 3)
print(z)
# [[[1 2 3]]
#
#  [[7 8 9]]]z = np.stack([x, y], axis=1)
print(z.shape)  # (1, 2, 3)
print(z)
# [[[1 2 3]
#   [7 8 9]]]z = np.stack([x, y], axis=2)
print(z.shape)  # (1, 3, 2)
print(z)
# [[[1 7]
#   [2 8]
#   [3 9]]]

vstack(tup)、hstack(tup)

numpy.vstack(tup) -> numpy.stack(arrays, axis=0)
numpy.hstack(tup) -> numpy.stack(arrays, axis=1)

x = np.array([1, 2, 3]).reshape(1, 3)
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.vstack((x, y))
print(z.shape)  # (2, 3)
print(z)
# [[1 2 3]
#  [7 8 9]]z = np.concatenate((x, y), axis=0)
print(z.shape)  # (2, 3)
print(z)
# [[1 2 3]
#  [7 8 9]]z = np.hstack((x, y))
print(z.shape)  # (1, 6)
print(z)
# [[ 1  2  3  7  8  9]]z = np.concatenate((x, y), axis=1)
print(z.shape)  # (1, 6)
print(z)
# [[1 2 3 7 8 9]]

数组拆分

numpy.split(ary, indices_or_sections, axis=0)

numpy.split(ary, indices_or_sections, axis=0) Split an array into multiple sub-arrays as views into ary.

x = np.array([[11, 12, 13, 14],[16, 17, 18, 19],[21, 22, 23, 24]])
y = np.split(x, [1, 3])
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19],
#        [21, 22, 23, 24]]), array([], shape=(0, 4), dtype=int32)]y = np.split(x, [1, 3], axis=1)
print(y)
# [array([[11],
#        [16],
#        [21]]), array([[12, 13],
#        [17, 18],
#        [22, 23]]), array([[14],
#        [19],
#        [24]])]

vsplit(ary, indices_or_sections)、hsplit(ary, indices_or_sections)

vsplit(ary, indices_or_sections) -> numpy.split(ary, indices_or_sections, axis=0)
hsplit(ary, indices_or_sections) -> numpy.split(ary, indices_or_sections, axis=1)

x = np.array([[11, 12, 13, 14],[16, 17, 18, 19],[21, 22, 23, 24]])
y = np.vsplit(x, 3)
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19]]), array([[21, 22, 23, 24]])]y = np.split(x, 3)
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19]]), array([[21, 22, 23, 24]])]x = np.array([[11, 12, 13, 14],[16, 17, 18, 19],[21, 22, 23, 24]])
y = np.hsplit(x, 2)
print(y)
# [array([[11, 12],
#        [16, 17],
#        [21, 22]]), array([[13, 14],
#        [18, 19],
#        [23, 24]])]y = np.split(x, 2, axis=1)
print(y)
# [array([[11, 12],
#        [16, 17],
#        [21, 22]]), array([[13, 14],
#        [18, 19],
#        [23, 24]])]

数组复制

numpy.tile(A, reps)

Construct an array by repeating A the number of times given by reps.
根据reps矩阵来对指定维度复制的次数

x = np.array([[1, 2], [3, 4]])
print(x)
# [[1 2]
#  [3 4]]y = np.tile(x, (1, 3))
print(y)
# [[1 2 1 2 1 2]
#  [3 4 3 4 3 4]]y = np.tile(x, (3, 1))
print(y)
# [[1 2]
#  [3 4]
#  [1 2]
#  [3 4]
#  [1 2]
#  [3 4]]y = np.tile(x, (3, 3))
print(y)
# [[1 2 1 2 1 2]
#  [3 4 3 4 3 4]
#  [1 2 1 2 1 2]
#  [3 4 3 4 3 4]
#  [1 2 1 2 1 2]
#  [3 4 3 4 3 4]]

numpy.repeat(a, repeats, axis=None)

numpy.repeat(a, repeats, axis=None) Repeat elements of an array.

  • axis=0,沿着y轴复制,实际上增加了行数。
  • axis=1,沿着x轴复制,实际上增加了列数。
  • repeats,可以为一个数,也可以为一个矩阵。
  • axis=None时就会flatten当前矩阵,实际上就是变成了一个行向量
x = np.repeat(3, 4)
print(x)  # [3 3 3 3]x = np.array([[1, 2], [3, 4]])
y = np.repeat(x, 2)
print(y)
# [1 1 2 2 3 3 4 4]y = np.repeat(x, 2, axis=0)
print(y)
# [[1 2]
#  [1 2]
#  [3 4]
#  [3 4]]y = np.repeat(x, 2, axis=1)
print(y)
# [[1 1 2 2]
#  [3 3 4 4]]y = np.repeat(x, [2, 3], axis=0)
print(y)
# [[1 2]
#  [1 2]
#  [3 4]
#  [3 4]
#  [3 4]]y = np.repeat(x, [2, 3], axis=1)
print(y)
# [[1 1 2 2 2]
#  [3 3 4 4 4]]

这篇关于numpy数组shape相关的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071321

相关文章

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException: org.junit.Test问题

《解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException:org.junit.Test问题》:本文主要介绍解决tomcat启动时报Junit相... 目录tomcat启动时报Junit相关错误Java.lang.ClassNotFoundException

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代