numpy数组shape相关

2024-06-18 04:38
文章标签 数组 相关 numpy shape

本文主要是介绍numpy数组shape相关,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

numpy数组shape相关操作

    • 数组变形
      • 通过numpy.ndarray.shape查看、修改数组形状
      • 通过numpy.ndarray.flat获取数组的一维迭代器
      • 通过numpy.ndarray.flatten([order='C']) 将获取数组一维数组的副本(返回的是拷贝)
      • 通过numpy.ravel(a, order='C') 将获取数组一维数组(order='C'返回的是视图,order='F'返回的是拷贝)
      • numpy.reshape(a, newshape[, order='C']) 改变数组形状(视图)
    • 数组转置
      • numpy.transpose(a, axes=None)
      • numpy.ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.
    • 增减维度
      • 通过numpy.newaxis增加维度
      • 通过numpy.squeeze(a, axis=None)删除维度
    • 数组拼接
      • numpy.concatenate((a1, a2, ...), axis=0, out=None) 按现有维度拼接
      • numpy.stack(arrays, axis=0, out=None) 增加新的维度进行拼接
      • vstack(tup)、hstack(tup)
    • 数组拆分
      • numpy.split(ary, indices_or_sections, axis=0)
      • vsplit(ary, indices_or_sections)、hsplit(ary, indices_or_sections)
    • 数组复制
      • numpy.tile(A, reps)
      • numpy.repeat(a, repeats, axis=None)

数组变形

通过numpy.ndarray.shape查看、修改数组形状

查看:

 x = np.array([1, 2, 9, 4, 5, 6, 7, 8])print(x.shape)  # (8,)

修改:

x.shape = [2, 4]
print(x)
# [[1 2 9 4]
#  [5 6 7 8]]

通过numpy.ndarray.flat获取数组的一维迭代器

通过numpy.ndarray.flat获取数组的以为迭代器后即可完成通过for等操作遍历数组或修改数组等
for循环遍历数组:

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = x.flat
print(y)
# <numpy.flatiter object at 0x0000020F9BA10C60>
for i in y:print(i, end=' ')
# 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

通过迭代器修改数组:

y[3] = 0
print(end='\n')
print(x)
# [[11 12 13  0 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

通过numpy.ndarray.flatten([order=‘C’]) 将获取数组一维数组的副本(返回的是拷贝)

order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘k’ – 元素在内存中的出现顺序

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = x.flatten()
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#  35]y[3] = 0
print(x)
# [[11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])y = x.flatten(order='F')
print(y)
# [11 16 21 26 31 12 17 22 27 32 13 18 23 28 33 14 19 24 29 34 15 20 25 30
#  35]y[3] = 0
print(x)
# [[11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

通过numpy.ravel(a, order=‘C’) 将获取数组一维数组(order='C’返回的是视图,order='F’返回的是拷贝)

order=‘C’

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = np.ravel(x)
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#  35]y[3] = 0
print(x)
# [[11 12 13  0 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

order=‘F’

x = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])y = np.ravel(x, order='F')
print(y)
# [11 16 21 26 31 12 17 22 27 32 13 18 23 28 33 14 19 24 29 34 15 20 25 30
#  35]y[3] = 0
print(x)
# [[11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [31 32 33 34 35]]

numpy.reshape(a, newshape[, order=‘C’]) 改变数组形状(视图)

reshape()函数当参数newshape = [rows,-1]时,将根据行数自动确定列数

x = np.arange(12)
y = np.reshape(x, [3, 4])
print(y.dtype)  # int32
print(y)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]y = np.reshape(x, [3, -1])
print(y)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]y = np.reshape(x,[-1,3])
print(y)
# [[ 0  1  2]
#  [ 3  4  5]
#  [ 6  7  8]
#  [ 9 10 11]]

当参数newshape = -1时,表示将数组降为一维

x = np.random.randint(12, size=[2, 2, 3])
print(x)
# [[[11  9  1]
#   [ 1 10  3]]
# 
#  [[ 0  6  1]
#   [ 4 11  3]]]
y = np.reshape(x, -1)
print(y)
# [11  9  1  1 10  3  0  6  1  4 11  3]

数组转置

numpy.transpose(a, axes=None)

x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[6.74 8.46 6.74 5.45 1.25]
#  [3.54 3.49 8.62 1.94 9.92]
#  [5.03 7.22 1.6  8.7  0.43]
#  [7.5  7.31 5.69 9.67 7.65]
#  [1.8  9.52 2.78 5.87 4.14]]
y = x.T
print(y)
# [[6.74 3.54 5.03 7.5  1.8 ]
#  [8.46 3.49 7.22 7.31 9.52]
#  [6.74 8.62 1.6  5.69 2.78]
#  [5.45 1.94 8.7  9.67 5.87]
#  [1.25 9.92 0.43 7.65 4.14]]

numpy.ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.

y = np.transpose(x)
print(y)
# [[6.74 3.54 5.03 7.5  1.8 ]
#  [8.46 3.49 7.22 7.31 9.52]
#  [6.74 8.62 1.6  5.69 2.78]
#  [5.45 1.94 8.7  9.67 5.87]
#  [1.25 9.92 0.43 7.65 4.14]]

增减维度

通过numpy.newaxis增加维度

x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape)  # (8,)
print(x)  # [1 2 9 4 5 6 7 8]y = x[np.newaxis, :]
print(y.shape)  # (1, 8)
print(y)  # [[1 2 9 4 5 6 7 8]]y = x[:, np.newaxis]
print(y.shape)  # (8, 1)
print(y)
# [[1]
#  [2]
#  [9]
#  [4]
#  [5]
#  [6]
#  [7]
#  [8]]

通过numpy.squeeze(a, axis=None)删除维度

numpy.squeeze(a, axis=None) 从数组的形状中删除单维度条目,即把shape中为1的维度去掉。
a表示输入的数组;
axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;

x = np.array([[[0], [1], [2]]])
print(x.shape)  # (1, 3, 1)
print(x)
# [[[0]
#   [1]
#   [2]]]y = np.squeeze(x)
print(y.shape)  # (3,)
print(y)  # [0 1 2]y = np.squeeze(x, axis=0)
print(y.shape)  # (3, 1)
print(y)
# [[0]
#  [1]
#  [2]]y = np.squeeze(x, axis=2)
print(y.shape)  # (1, 3)
print(y)  # [[0 1 2]]y = np.squeeze(x, axis=1)
# ValueError: cannot select an axis to squeeze out which has size not equal to one

数组拼接

numpy.concatenate((a1, a2, …), axis=0, out=None) 按现有维度拼接

x,y在原来的维度上进行拼接:

x = np.array([1, 2, 3])
y = np.array([7, 8, 9])
z = np.concatenate([x, y])
print(z)
# [1 2 3 7 8 9]z = np.concatenate([x, y], axis=0)
print(z)
# [1 2 3 7 8 9]x = np.array([1, 2, 3]).reshape(1, 3)
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.concatenate([x, y])
print(z)
# [[ 1  2  3]
#  [ 7  8  9]]
z = np.concatenate([x, y], axis=0)
print(z)
# [[ 1  2  3]
#  [ 7  8  9]]
z = np.concatenate([x, y], axis=1)
print(z)
# [[ 1  2  3  7  8  9]]

numpy.stack(arrays, axis=0, out=None) 增加新的维度进行拼接

x = np.array([1, 2, 3]).reshape(1, 3)
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.stack([x, y])
print(z.shape)  # (2, 1, 3)
print(z)
# [[[1 2 3]]
#
#  [[7 8 9]]]z = np.stack([x, y], axis=1)
print(z.shape)  # (1, 2, 3)
print(z)
# [[[1 2 3]
#   [7 8 9]]]z = np.stack([x, y], axis=2)
print(z.shape)  # (1, 3, 2)
print(z)
# [[[1 7]
#   [2 8]
#   [3 9]]]

vstack(tup)、hstack(tup)

numpy.vstack(tup) -> numpy.stack(arrays, axis=0)
numpy.hstack(tup) -> numpy.stack(arrays, axis=1)

x = np.array([1, 2, 3]).reshape(1, 3)
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.vstack((x, y))
print(z.shape)  # (2, 3)
print(z)
# [[1 2 3]
#  [7 8 9]]z = np.concatenate((x, y), axis=0)
print(z.shape)  # (2, 3)
print(z)
# [[1 2 3]
#  [7 8 9]]z = np.hstack((x, y))
print(z.shape)  # (1, 6)
print(z)
# [[ 1  2  3  7  8  9]]z = np.concatenate((x, y), axis=1)
print(z.shape)  # (1, 6)
print(z)
# [[1 2 3 7 8 9]]

数组拆分

numpy.split(ary, indices_or_sections, axis=0)

numpy.split(ary, indices_or_sections, axis=0) Split an array into multiple sub-arrays as views into ary.

x = np.array([[11, 12, 13, 14],[16, 17, 18, 19],[21, 22, 23, 24]])
y = np.split(x, [1, 3])
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19],
#        [21, 22, 23, 24]]), array([], shape=(0, 4), dtype=int32)]y = np.split(x, [1, 3], axis=1)
print(y)
# [array([[11],
#        [16],
#        [21]]), array([[12, 13],
#        [17, 18],
#        [22, 23]]), array([[14],
#        [19],
#        [24]])]

vsplit(ary, indices_or_sections)、hsplit(ary, indices_or_sections)

vsplit(ary, indices_or_sections) -> numpy.split(ary, indices_or_sections, axis=0)
hsplit(ary, indices_or_sections) -> numpy.split(ary, indices_or_sections, axis=1)

x = np.array([[11, 12, 13, 14],[16, 17, 18, 19],[21, 22, 23, 24]])
y = np.vsplit(x, 3)
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19]]), array([[21, 22, 23, 24]])]y = np.split(x, 3)
print(y)
# [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19]]), array([[21, 22, 23, 24]])]x = np.array([[11, 12, 13, 14],[16, 17, 18, 19],[21, 22, 23, 24]])
y = np.hsplit(x, 2)
print(y)
# [array([[11, 12],
#        [16, 17],
#        [21, 22]]), array([[13, 14],
#        [18, 19],
#        [23, 24]])]y = np.split(x, 2, axis=1)
print(y)
# [array([[11, 12],
#        [16, 17],
#        [21, 22]]), array([[13, 14],
#        [18, 19],
#        [23, 24]])]

数组复制

numpy.tile(A, reps)

Construct an array by repeating A the number of times given by reps.
根据reps矩阵来对指定维度复制的次数

x = np.array([[1, 2], [3, 4]])
print(x)
# [[1 2]
#  [3 4]]y = np.tile(x, (1, 3))
print(y)
# [[1 2 1 2 1 2]
#  [3 4 3 4 3 4]]y = np.tile(x, (3, 1))
print(y)
# [[1 2]
#  [3 4]
#  [1 2]
#  [3 4]
#  [1 2]
#  [3 4]]y = np.tile(x, (3, 3))
print(y)
# [[1 2 1 2 1 2]
#  [3 4 3 4 3 4]
#  [1 2 1 2 1 2]
#  [3 4 3 4 3 4]
#  [1 2 1 2 1 2]
#  [3 4 3 4 3 4]]

numpy.repeat(a, repeats, axis=None)

numpy.repeat(a, repeats, axis=None) Repeat elements of an array.

  • axis=0,沿着y轴复制,实际上增加了行数。
  • axis=1,沿着x轴复制,实际上增加了列数。
  • repeats,可以为一个数,也可以为一个矩阵。
  • axis=None时就会flatten当前矩阵,实际上就是变成了一个行向量
x = np.repeat(3, 4)
print(x)  # [3 3 3 3]x = np.array([[1, 2], [3, 4]])
y = np.repeat(x, 2)
print(y)
# [1 1 2 2 3 3 4 4]y = np.repeat(x, 2, axis=0)
print(y)
# [[1 2]
#  [1 2]
#  [3 4]
#  [3 4]]y = np.repeat(x, 2, axis=1)
print(y)
# [[1 1 2 2]
#  [3 3 4 4]]y = np.repeat(x, [2, 3], axis=0)
print(y)
# [[1 2]
#  [1 2]
#  [3 4]
#  [3 4]
#  [3 4]]y = np.repeat(x, [2, 3], axis=1)
print(y)
# [[1 1 2 2 2]
#  [3 3 4 4 4]]

这篇关于numpy数组shape相关的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071321

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET