rnn定义(rnn批次,核心思想理解)循环神经网络(递归)

2024-06-17 23:28

本文主要是介绍rnn定义(rnn批次,核心思想理解)循环神经网络(递归),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

rnn源码阅读方法:

点击去往后翻 注释都放在最后

也可以直接粘贴出来gpt解释

一rnn核心思想:

1.定义rnn模型

2.定义输入层

3.定义隐藏层(通过设置参数调整隐藏层层数) 初始隐藏状态需要与输入张量的大小相匹配,以便RNN能够正确地处理数据。

4定义输出层

代码演示:

def dm_rnn_for_base():# 创建一个RNN模型'''input_size:这是输入数据的维度。对于nn.RNN,它是一个标量,表示每个时间步的输入数据的维度。在这个例子中,input_size被设置为5。
hidden_size:这是RNN中隐藏层的大小。这个参数决定了网络能够学习的状态空间的大小。在这个例子中,hidden_size被设置为6。
num_layers:这是RNN中层的数量。每个层都包含一个或多个隐藏单元。在这个例子中,num_layers被设置为1,意味着只有一个隐藏层。:return:'''rnn = nn.RNN(5, 6, 1)# 创建一个随机输入张量,形状为(batch_size, sequence_length, input_size)# 在这个例子中,batch_size为1,sequence_length为3,input_size为5input = torch.randn(1, 3, 5)# 创建一个随机初始隐藏状态张量,形状为(num_layers, batch_size, hidden_size)# 在这个例子中,num_layers为1,batch_size为1,hidden_size为6h0 = torch.randn(1, 3, 6)# 使用RNN模型进行前向传播,输入为input,初始隐藏状态为h0# 输出为一个张量,包含所有时间步的输出,形状为(sequence_length, batch_size, hidden_size)# 隐藏状态张量hn包含了最后一个时间步的隐藏状态,形状为(num_layers, batch_size, hidden_size)output, hn = rnn(input, h0)# 打印输出张量和隐藏状态张量的形状和内容print('output', output.shape, output)print('hn', hn.shape, hn)# 打印RNN模型的详细信息print('rnn模型打印', rnn)

output, hn = rnn(input, h0)

返回值解释: 区别

output保存了每一行的输出 hn只保留了最后一个隐藏层输出

batch 和batch_size区别:

epoch=100

batch_size=5

那么batch=25(100/25)

batch_size=5

不用batch和batch_size区别:

逐个训练会占用更多的 时间

分批次会并行计算然后合并 更高效

注意事项:

nn.rnn和rnn 前向传播区别:

在PyTorch中,nn.RNN是一个类,它定义了RNN的计算图和前向传播操作。当你创建一个nn.RNN的实例时,你实际上并没有执行前向传播,只是定义了前向传播的计算图。前向传播是在你调用nn.RNN实例的forward方法时执行的。

在PyTorch中,所有的神经网络模块(如nn.RNN)都有一个forward方法,这个方法定义了网络的计算过程。当你使用rnn(input, h0)这样的形式调用nn.RNN实例的forward方法时,你才真正执行了前向传播。

因此,当你看到代码中出现rnn = nn.RNN(5, 6, 1)时,这行代码只是创建了一个nn.RNN的实例,并没有执行前向传播。真正执行前向传播的是output, hn = rnn(input, h0)这行代码。

两次执行前向传播的区别在于:

  1. 第一次执行(创建nn.RNN实例):这行代码定义了RNN的前向传播计算图,但并没有执行计算。
  2. 第二次执行(调用nn.RNN实例的forward方法):这行代码执行了前向传播,计算了输出和隐藏状态。

batch_first=true辨析

batch_first开启后层次更明了 rnn每一层保存一个单词第n个 多个层次后才结束

batch_first rnn每一层一个的单词的从开始到结束

默认值(batch_first=False):如果batch_first设置为False,则输入张量(torch.randn(1, 3, 5))的形状应该为(sequence_length, batch_size, input_size)。在这种情况下,RNN的forward方法会按时间步顺序处理序列数据,即首先处理序列的第一个元素,然后是第二个元素,依此类推。todo 一个单词的中的一个字母叫元素  love  word 处理顺序: l w   o o  v r
设置为True(batch_first=True):如果batch_first设置为True,则输入张量的形状应该为(batch_size, sequence_length, input_size)。
在这种情况下,RNN的forward方法会按批次顺序处理序列数据,即首先处理序列的第一个批次,然后是第二个批次,依此类推。todo 一个批次 所有单词处理完    love word 处理顺序  love word

当batch_first设置为True时,输入张量的形状应该是(batch_size, sequence_length, input_size);当batch_first设置为False时,输入张量的形状应该是(sequence_length, batch_size, input_size)。

所以true后要调整参数

RNN中批次处理问题:

无论是否分批次处理,RNN中的数据都是按照时间步顺序逐个处理的。

这篇关于rnn定义(rnn批次,核心思想理解)循环神经网络(递归)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070701

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的for循环高级用法

《Java中的for循环高级用法》本文系统解析Java中传统、增强型for循环、StreamAPI及并行流的实现原理与性能差异,并通过大量代码示例展示实际开发中的最佳实践,感兴趣的朋友一起看看吧... 目录前言一、基础篇:传统for循环1.1 标准语法结构1.2 典型应用场景二、进阶篇:增强型for循环2.

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f

mysql递归查询语法WITH RECURSIVE的使用

《mysql递归查询语法WITHRECURSIVE的使用》本文主要介绍了mysql递归查询语法WITHRECURSIVE的使用,WITHRECURSIVE用于执行递归查询,特别适合处理层级结构或递归... 目录基本语法结构:关键部分解析:递归查询的工作流程:示例:员工与经理的层级关系解释:示例:树形结构的数

Spring三级缓存解决循环依赖的解析过程

《Spring三级缓存解决循环依赖的解析过程》:本文主要介绍Spring三级缓存解决循环依赖的解析过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、循环依赖场景二、三级缓存定义三、解决流程(以ServiceA和ServiceB为例)四、关键机制详解五、设计约

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊