Score Matching(得分匹配)

2024-06-17 23:12
文章标签 匹配 score 得分 matching

本文主要是介绍Score Matching(得分匹配),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Score Matching(得分匹配)是一种统计学习方法,用于估计概率密度函数的梯度(即得分函数),而无需知道密度函数的归一化常数。这种方法由Hyvärinen在2005年提出,主要用于无监督学习,特别是在密度估计和生成模型中。

基本原理

在概率论中,得分函数(Score Function)是概率密度函数关于其参数的梯度。对于一个随机变量 x x x 的概率密度函数 p ( x ) p(x) p(x),其得分函数 ∇ x log ⁡ p ( x ) \nabla_x \log p(x) xlogp(x) 定义为:
score ( x ) = ∇ x log ⁡ p ( x ) \text{score}(x) = \nabla_x \log p(x) score(x)=xlogp(x)
得分匹配的目标是学习一个模型 q ( x ; θ ) q(x; \theta) q(x;θ),使得模型得分函数 ∇ x log ⁡ q ( x ; θ ) \nabla_x \log q(x; \theta) xlogq(x;θ) 与真实分布 p ( x ) p(x) p(x) 的得分函数尽可能接近。

得分匹配的损失函数

得分匹配的损失函数定义为模型得分函数与真实得分函数之间的期望差异,通常通过以下形式表示:
L ( θ ) = E x ∼ p ( x ) [ 1 2 ∥ ∇ x log ⁡ q ( x ; θ ) − ∇ x log ⁡ p ( x ) ∥ 2 ] L(\theta) = \mathbb{E}_{x \sim p(x)} \left[ \frac{1}{2} \|\nabla_x \log q(x; \theta) - \nabla_x \log p(x)\|^2 \right] L(θ)=Exp(x)[21xlogq(x;θ)xlogp(x)2]
由于我们通常无法直接计算 p ( x ) p(x) p(x) 的得分函数,Hyvärinen提出了一种技巧,通过积分变换,可以将上述损失函数转化为一个无需知道 p ( x ) p(x) p(x) 的表达式:
L ( θ ) = E x ∼ p ( x ) [ 1 2 ∥ ∇ x log ⁡ q ( x ; θ ) ∥ 2 + ∇ x 2 log ⁡ q ( x ; θ ) ] L(\theta) = \mathbb{E}_{x \sim p(x)} \left[ \frac{1}{2} \|\nabla_x \log q(x; \theta)\|^2 + \nabla_x^2 \log q(x; \theta) \right] L(θ)=Exp(x)[21xlogq(x;θ)2+x2logq(x;θ)]
这意味着我们只需要知道模型 q ( x ; θ ) q(x; \theta) q(x;θ) 的得分函数和二阶导数,就可以计算损失函数。

应用

得分匹配方法在以下领域有广泛应用:

  1. 密度估计:通过学习一个模型来近似未知的数据分布,无需知道分布的归一化常数。
  2. 生成模型:在生成模型中,得分匹配可以用于训练模型,使其能够生成与训练数据相似的样本。
  3. 自编码器:得分匹配可以用于训练自编码器,通过最小化重构误差和正则化项来学习数据的低维表示。
  4. 深度学习:在深度学习中,得分匹配可以用于训练深度神经网络,特别是当目标分布难以直接建模时。

优点与局限性

优点

  • 无需知道概率密度函数的归一化常数。
  • 损失函数易于计算,只需要模型的一阶和二阶导数。

局限性

  • 对于高维数据,计算二阶导数可能非常复杂和计算密集。
  • 得分匹配可能对异常值敏感,因为损失函数直接依赖于得分函数。

得分匹配是一种强大的工具,特别是在处理复杂分布和生成模型时。然而,它也需要仔细的实现和参数调整,以确保有效性和稳定性。

举例

让我们通过一个简单的例子来说明得分匹配方法的应用。假设我们有一组来自未知分布的一维数据点,我们的目标是估计这个分布的密度函数。在这个例子中,我们将使用一个简单的模型,如高斯分布,来近似这个未知分布。

步骤1:数据收集

假设我们有一组一维数据点 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn,这些数据点是从某个未知的一维分布中抽取的。

步骤2:模型选择

我们选择一个高斯分布作为我们的模型 q ( x ; θ ) q(x; \theta) q(x;θ),其中 θ = ( μ , σ 2 ) \theta = (\mu, \sigma^2) θ=(μ,σ2) 是模型的参数,表示均值和方差。高斯分布的概率密度函数为:
q ( x ; θ ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) q(x; \theta) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) q(x;θ)=2πσ2 1exp(2σ2(xμ)2)

步骤3:得分函数计算

对于高斯分布,得分函数(即概率密度函数的对数梯度)为:
∇ x log ⁡ q ( x ; θ ) = x − μ σ 2 \nabla_x \log q(x; \theta) = \frac{x - \mu}{\sigma^2} xlogq(x;θ)=σ2xμ

步骤4:得分匹配损失函数

得分匹配的损失函数为:
L ( θ ) = E x ∼ p ( x ) [ 1 2 ∥ ∇ x log ⁡ q ( x ; θ ) ∥ 2 + ∇ x 2 log ⁡ q ( x ; θ ) ] L(\theta) = \mathbb{E}_{x \sim p(x)} \left[ \frac{1}{2} \|\nabla_x \log q(x; \theta)\|^2 + \nabla_x^2 \log q(x; \theta) \right] L(θ)=Exp(x)[21xlogq(x;θ)2+x2logq(x;θ)]
对于高斯分布,这个损失函数可以简化为:
L ( θ ) = E x ∼ p ( x ) [ ( x − μ ) 2 σ 4 + 1 σ 2 ] L(\theta) = \mathbb{E}_{x \sim p(x)} \left[ \frac{(x - \mu)^2}{\sigma^4} + \frac{1}{\sigma^2} \right] L(θ)=Exp(x)[σ4(xμ)2+σ21]

步骤5:参数估计

我们使用数据点 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn 来估计损失函数 L ( θ ) L(\theta) L(θ) 的期望值。由于我们不知道真实的分布 p ( x ) p(x) p(x),我们使用经验分布来近似期望:
L ( θ ) ≈ 1 n ∑ i = 1 n [ ( x i − μ ) 2 σ 4 + 1 σ 2 ] L(\theta) \approx \frac{1}{n} \sum_{i=1}^n \left[ \frac{(x_i - \mu)^2}{\sigma^4} + \frac{1}{\sigma^2} \right] L(θ)n1i=1n[σ4(xiμ)2+σ21]
然后,我们通过最小化这个损失函数来估计参数 θ \theta θ
θ ^ = arg ⁡ min ⁡ θ L ( θ ) \hat{\theta} = \arg\min_{\theta} L(\theta) θ^=argminθL(θ)

步骤6:模型评估

一旦我们估计出了参数 θ ^ \hat{\theta} θ^,我们就可以使用高斯分布 q ( x ; θ ^ ) q(x; \hat{\theta}) q(x;θ^) 来近似未知的数据分布。我们可以通过计算模型在数据点上的对数似然来评估模型的性能。

这个例子展示了得分匹配方法的基本步骤,尽管它是一个简化的版本。在实际应用中,数据可能来自高维分布,模型可能更加复杂(如深度神经网络),并且需要更复杂的优化技术来估计模型参数。

这篇关于Score Matching(得分匹配)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070673

相关文章

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu 3065 AC自动机 匹配串编号以及出现次数

题意: 仍旧是天朝语题。 Input 第一行,一个整数N(1<=N<=1000),表示病毒特征码的个数。 接下来N行,每行表示一个病毒特征码,特征码字符串长度在1—50之间,并且只包含“英文大写字符”。任意两个病毒特征码,不会完全相同。 在这之后一行,表示“万恶之源”网站源码,源码字符串长度在2000000之内。字符串中字符都是ASCII码可见字符(不包括回车)。

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

POJ 3057 最大二分匹配+bfs + 二分

SampleInput35 5XXDXXX...XD...XX...DXXXXX5 12XXXXXXXXXXXXX..........DX.XXXXXXXXXXX..........XXXXXXXXXXXXX5 5XDXXXX.X.DXX.XXD.X.XXXXDXSampleOutput321impossible

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

二分图的最大匹配——《啊哈!算法》

二分图 如果一个图的所有顶点可以被分为X和Y两个集合,并且所有边的两个顶点恰好一个属于X,另外一个属于Y,即每个集合内的顶点没有边相连,那么此图就是二分图。 二分图在任务调度、工作安排等方面有较多的应用。 判断二分图:首先将任意一个顶点着红色,然后将其相邻的顶点着蓝色,如果按照这样的着色方法可以将全部顶点着色的话,并且相邻的顶点着色不同,那么该图就是二分图。 java

web群集--nginx配置文件location匹配符的优先级顺序详解及验证

文章目录 前言优先级顺序优先级顺序(详解)1. 精确匹配(Exact Match)2. 正则表达式匹配(Regex Match)3. 前缀匹配(Prefix Match) 匹配规则的综合应用验证优先级 前言 location的作用 在 NGINX 中,location 指令用于定义如何处理特定的请求 URI。由于网站往往需要不同的处理方式来适应各种请求,NGINX 提供了多种匹

856. Score of Parentheses

856. Score of Parentheses class Solution:def scoreOfParentheses(self, s: str) -> int:stack=[]i=0for c in s:if c=='(':stack.append(c)else:score=0while stack[-1]!='(':score+=stack.pop()stack.pop()score

JavaScript 根据关键字匹配数组项

要在JavaScript数组中根据关键字匹配项,可以使用filter方法结合一个测试函数。以下是一个示例代码,定义了一个函数findByKeyword,该函数接受一个数组和一个关键字,然后返回一个新数组,其中包含与关键字匹配的所有项。 function findByKeyword(array, keyword) {return array.filter(item => {// 假设要匹配的是对象

匹配电子邮件地址的正则表达式

这个正则表达式 QRegularExpression regex(R"((\w+)(\.|_)?(\w+)@(\w+)(\.(\w+))+))"); 用于匹配电子邮件地址的格式。下面是对这个正则表达式的逐步解析和解释: 1. QRegularExpression 构造函数 QRegularExpression regex(R"((\w+)(\.|_)?(\w*)@(\w+)(\.(\w+))+