C++ -- 红黑树的基本操作

2024-06-17 17:44
文章标签 c++ 基本操作 红黑树

本文主要是介绍C++ -- 红黑树的基本操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

摘要

基本规则

基本操作

利用Graphviz 库

总结


摘要

红黑树是一种自平衡的二叉搜索树,它在插入和删除节点时,通过颜色和旋转操作保持树的平衡,确保插入、删除和查找的时间复杂度都是 (O(log n))。红黑树的每个节点都有一个颜色属性,红色或黑色。通过一些规则,红黑树保持了相对平衡,使得最长路径长度不会超过最短路径长度的两倍。

基本规则

1. 每个节点不是红色就是黑色。
2. 根节点是黑色。
3. 每个叶子节点(NIL节点)是黑色。
4. 如果一个节点是红色的,则它的两个子节点都是黑色的(从每个叶子到根的所有路径上不能有两个连续的红色节点)。
5. 从任一节点到其每个叶子的所有简单路径都包含相同数量的黑色节点。

基本操作

插入操作

#include <iostream>enum Color { RED, BLACK };struct Node {int data;Color color;Node *left, *right, *parent;Node(int data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}
};class RedBlackTree {
public:RedBlackTree() : root(nullptr) {}void insert(int data) {Node* newNode = new Node(data);root = bstInsert(root, newNode);fixViolation(newNode);}void inorder() { inorderHelper(root); }private:Node* root;Node* bstInsert(Node* root, Node* node) {if (root == nullptr) return node;if (node->data < root->data) {root->left = bstInsert(root->left, node);root->left->parent = root;} else if (node->data > root->data) {root->right = bstInsert(root->right, node);root->right->parent = root;}return root;}void fixViolation(Node* node) {Node* parent = nullptr;Node* grandParent = nullptr;while (node != root && node->color == RED && node->parent->color == RED) {parent = node->parent;grandParent = parent->parent;if (parent == grandParent->left) {Node* uncle = grandParent->right;if (uncle != nullptr && uncle->color == RED) {grandParent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandParent;} else {if (node == parent->right) {rotateLeft(parent);node = parent;parent = node->parent;}rotateRight(grandParent);std::swap(parent->color, grandParent->color);node = parent;}} else {Node* uncle = grandParent->left;if (uncle != nullptr && uncle->color == RED) {grandParent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandParent;} else {if (node == parent->left) {rotateRight(parent);node = parent;parent = node->parent;}rotateLeft(grandParent);std::swap(parent->color, grandParent->color);node = parent;}}}root->color = BLACK;}void rotateLeft(Node* node) {Node* rightNode = node->right;node->right = rightNode->left;if (node->right != nullptr) node->right->parent = node;rightNode->parent = node->parent;if (node->parent == nullptr) root = rightNode;else if (node == node->parent->left) node->parent->left = rightNode;else node->parent->right = rightNode;rightNode->left = node;node->parent = rightNode;}void rotateRight(Node* node) {Node* leftNode = node->left;node->left = leftNode->right;if (node->left != nullptr) node->left->parent = node;leftNode->parent = node->parent;if (node->parent == nullptr) root = leftNode;else if (node == node->parent->left) node->parent->left = leftNode;else node->parent->right = leftNode;leftNode->right = node;node->parent = leftNode;}void inorderHelper(Node* root) {if (root == nullptr) return;inorderHelper(root->left);std::cout << root->data << " ";inorderHelper(root->right);}
};int main() {RedBlackTree tree;tree.insert(10);tree.insert(20);tree.insert(30);tree.insert(15);std::cout << "Inorder traversal of the constructed tree is ";tree.inorder();std::cout << std::endl;return 0;
}
// Output
Inorder traversal of the constructed tree is 10 15 20 3020(B)/    \
10(B)  30(B)\15(R)

插入和删除操作

#include <iostream>
#include <queue>enum Color { RED, BLACK };struct Node {int data;Color color;Node *left, *right, *parent;Node(int data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}Node* sibling() {if (parent == nullptr) return nullptr;return this == parent->left ? parent->right : parent->left;}bool hasRedChild() {return (left != nullptr && left->color == RED) || (right != nullptr && right->color == RED);}
};class RedBlackTree {
public:Node* root;RedBlackTree() : root(nullptr) {}void insert(int data) {Node* newNode = new Node(data);root = bstInsert(root, newNode);fixViolation(newNode);}void deleteNode(int data) {Node* nodeToDelete = search(root, data);if (nodeToDelete == nullptr) return;deleteBSTNode(nodeToDelete);}void inorder() { inorderHelper(root); }void levelOrder() {if (root == nullptr) return;std::queue<Node*> q;q.push(root);while (!q.empty()) {Node* temp = q.front();std::cout << temp->data << " ";q.pop();if (temp->left != nullptr)q.push(temp->left);if (temp->right != nullptr)q.push(temp->right);}}private:Node* bstInsert(Node* root, Node* node) {if (root == nullptr) return node;if (node->data < root->data) {root->left = bstInsert(root->left, node);root->left->parent = root;} else if (node->data > root->data) {root->right = bstInsert(root->right, node);root->right->parent = root;}return root;}Node* search(Node* root, int data) {if (root == nullptr || root->data == data) return root;return data < root->data ? search(root->left, data) : search(root->right, data);}void deleteBSTNode(Node* node) {Node* replacement = BSTreplace(node);bool bothBlack = ((replacement == nullptr || replacement->color == BLACK) && (node->color == BLACK));Node* parent = node->parent;if (replacement == nullptr) {if (node == root) {root = nullptr;} else {if (bothBlack) {fixDoubleBlack(node);} else {if (node->sibling() != nullptr) node->sibling()->color = RED;}if (node == node->parent->left) {node->parent->left = nullptr;} else {node->parent->right = nullptr;}}delete node;return;}if (node->left == nullptr || node->right == nullptr) {if (node == root) {node->data = replacement->data;node->left = node->right = nullptr;delete replacement;} else {if (node == node->parent->left) {parent->left = replacement;} else {parent->right = replacement;}delete node;replacement->parent = parent;if (bothBlack) {fixDoubleBlack(replacement);} else {replacement->color = BLACK;}}return;}std::swap(node->data, replacement->data);deleteBSTNode(replacement);}Node* BSTreplace(Node* node) {if (node->left != nullptr && node->right != nullptr) return successor(node->right);if (node->left == nullptr && node->right == nullptr) return nullptr;return node->left != nullptr ? node->left : node->right;}Node* successor(Node* node) {Node* temp = node;while (temp->left != nullptr) temp = temp->left;return temp;}void fixViolation(Node* node) {Node* parent = nullptr;Node* grandParent = nullptr;while (node != root && node->color == RED && node->parent->color == RED) {parent = node->parent;grandParent = parent->parent;if (parent == grandParent->left) {Node* uncle = grandParent->right;if (uncle != nullptr && uncle->color == RED) {grandParent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandParent;} else {if (node == parent->right) {rotateLeft(parent);node = parent;parent = node->parent;}rotateRight(grandParent);std::swap(parent->color, grandParent->color);node = parent;}} else {Node* uncle = grandParent->left;if (uncle != nullptr && uncle->color == RED) {grandParent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandParent;} else {if (node == parent->left) {rotateRight(parent);node = parent;parent = node->parent;}rotateLeft(grandParent);std::swap(parent->color, grandParent->color);node = parent;}}}root->color = BLACK;}void fixDoubleBlack(Node* node) {if (node == root) return;Node* sibling = node->sibling();Node* parent = node->parent;if (sibling == nullptr) {fixDoubleBlack(parent);} else {if (sibling->color == RED) {parent->color = RED;sibling->color = BLACK;if (sibling == parent->left) {rotateRight(parent);} else {rotateLeft(parent);}fixDoubleBlack(node);} else {if (sibling->hasRedChild()) {if (sibling->left != nullptr && sibling->left->color == RED) {if (sibling == parent->left) {sibling->left->color = sibling->color;sibling->color = parent->color;rotateRight(parent);} else {sibling->left->color = parent->color;rotateRight(sibling);rotateLeft(parent);}} else {if (sibling == parent->left) {sibling->right->color = parent->color;rotateLeft(sibling);rotateRight(parent);} else {sibling->right->color = sibling->color;sibling->color = parent->color;rotateLeft(parent);}}parent->color = BLACK;} else {sibling->color = RED;if (parent->color == BLACK) {fixDoubleBlack(parent);} else {parent->color = BLACK;}}}}}void rotateLeft(Node* node) {Node* rightNode = node->right;node->right = rightNode->left;if (node->right != nullptr) node->right->parent = node;rightNode->parent = node->parent;if (node->parent == nullptr) root = rightNode;else if (node == node->parent->left) node->parent->left = rightNode;else node->parent->right = rightNode;rightNode->left = node;node->parent = rightNode;}void rotateRight(Node* node) {Node* leftNode = node->left;node->left = leftNode->right;if (node->left != nullptr) node->left->parent = node;leftNode->parent = node->parent;if (node->parent == nullptr) root = leftNode;else if (node == node->parent->left) node->parent->left = leftNode;else node->parent->right = leftNode;leftNode->right = node;node->parent = leftNode;}void inorderHelper(Node* root) {if (root == nullptr) return;inorderHelper(root->left);std::cout << root->data << " ";inorderHelper(root->right);}
};int main() {RedBlackTree tree;tree.insert(10);tree.insert(20);tree.insert(30);tree.insert(15);tree.insert(25);tree.insert(5);std::cout << "Inorder traversal of the constructed tree is ";tree.inorder();std::cout << std::endl;tree.deleteNode(20);std::cout << "Inorder traversal after deleting 20 is ";tree.inorder();std::cout << std::endl;std::cout << "Level order traversal of the tree is ";tree.levelOrder();std::cout << std::endl;return 0;
}
// OutputInorder traversal of the constructed tree is 5 10 15 20 25 30 
Inorder traversal after deleting 20 is 5 10 15 25 30 
Level order traversal of the tree is 15 10 30 5 25 15(B)/    \
10(B)  30(B)/     /
5(B)  25(R)

利用Graphviz 库

利用 Graphviz 库的图形化表示我们需要生成的红黑树。

Graphviz Online

#include <iostream>
#include <fstream>
#include <queue>enum Color { RED, BLACK };struct Node {int data;Color color;Node *left, *right, *parent;Node(int data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}Node* sibling() {if (parent == nullptr) return nullptr;return this == parent->left ? parent->right : parent->left;}bool hasRedChild() {return (left != nullptr && left->color == RED) || (right != nullptr && right->color == RED);}
};class RedBlackTree {
public:Node* root;RedBlackTree() : root(nullptr) {}void insert(int data) {Node* newNode = new Node(data);root = bstInsert(root, newNode);fixViolation(newNode);}void deleteNode(int data) {Node* nodeToDelete = search(root, data);if (nodeToDelete == nullptr) return;deleteBSTNode(nodeToDelete);}void inorder() { inorderHelper(root); }void levelOrder() {if (root == nullptr) return;std::queue<Node*> q;q.push(root);while (!q.empty()) {Node* temp = q.front();std::cout << temp->data << " ";q.pop();if (temp->left != nullptr)q.push(temp->left);if (temp->right != nullptr)q.push(temp->right);}}void generateGraphviz(const std::string& filename) {std::ofstream file(filename);file << "digraph G {\n";if (root == nullptr) {file << "}\n";return;}generateGraphvizHelper(file, root);file << "}\n";}private:Node* bstInsert(Node* root, Node* node) {if (root == nullptr) return node;if (node->data < root->data) {root->left = bstInsert(root->left, node);root->left->parent = root;} else if (node->data > root->data) {root->right = bstInsert(root->right, node);root->right->parent = root;}return root;}Node* search(Node* root, int data) {if (root == nullptr || root->data == data) return root;return data < root->data ? search(root->left, data) : search(root->right, data);}void deleteBSTNode(Node* node) {Node* replacement = BSTreplace(node);bool bothBlack = ((replacement == nullptr || replacement->color == BLACK) && (node->color == BLACK));Node* parent = node->parent;if (replacement == nullptr) {if (node == root) {root = nullptr;} else {if (bothBlack) {fixDoubleBlack(node);} else {if (node->sibling() != nullptr) node->sibling()->color = RED;}if (node == node->parent->left) {node->parent->left = nullptr;} else {node->parent->right = nullptr;}}delete node;return;}if (node->left == nullptr || node->right == nullptr) {if (node == root) {node->data = replacement->data;node->left = node->right = nullptr;delete replacement;} else {if (node == node->parent->left) {parent->left = replacement;} else {parent->right = replacement;}delete node;replacement->parent = parent;if (bothBlack) {fixDoubleBlack(replacement);} else {replacement->color = BLACK;}}return;}std::swap(node->data, replacement->data);deleteBSTNode(replacement);}Node* BSTreplace(Node* node) {if (node->left != nullptr && node->right != nullptr) return successor(node->right);if (node->left == nullptr && node->right == nullptr) return nullptr;return node->left != nullptr ? node->left : node->right;}Node* successor(Node* node) {Node* temp = node;while (temp->left != nullptr) temp = temp->left;return temp;}void fixViolation(Node* node) {Node* parent = nullptr;Node* grandParent = nullptr;while (node != root && node->color == RED && node->parent->color == RED) {parent = node->parent;grandParent = parent->parent;if (parent == grandParent->left) {Node* uncle = grandParent->right;if (uncle != nullptr && uncle->color == RED) {grandParent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandParent;} else {if (node == parent->right) {rotateLeft(parent);node = parent;parent = node->parent;}rotateRight(grandParent);std::swap(parent->color, grandParent->color);node = parent;}} else {Node* uncle = grandParent->left;if (uncle != nullptr && uncle->color == RED) {grandParent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandParent;} else {if (node == parent->left) {rotateRight(parent);node = parent;parent = node->parent;}rotateLeft(grandParent);std::swap(parent->color, grandParent->color);node = parent;}}}root->color = BLACK;}void fixDoubleBlack(Node* node) {if (node == root) return;Node* sibling = node->sibling();Node* parent = node->parent;if (sibling == nullptr) {fixDoubleBlack(parent);} else {if (sibling->color == RED) {parent->color = RED;sibling->color = BLACK;if (sibling == parent->left) {rotateRight(parent);} else {rotateLeft(parent);}fixDoubleBlack(node);} else {if (sibling->hasRedChild()) {if (sibling->left != nullptr && sibling->left->color == RED) {if (sibling == parent->left) {sibling->left->color = sibling->color;sibling->color = parent->color;rotateRight(parent);} else {sibling->left->color = parent->color;rotateRight(sibling);rotateLeft(parent);}} else {if (sibling == parent->left) {sibling->right->color = parent->color;rotateLeft(sibling);rotateRight(parent);} else {sibling->right->color = sibling->color;sibling->color = parent->color;rotateLeft(parent);}}parent->color = BLACK;} else {sibling->color = RED;if (parent->color == BLACK) {fixDoubleBlack(parent);} else {parent->color = BLACK;}}}}}void rotateLeft(Node* node) {Node* rightNode = node->right;node->right = rightNode->left;if (node->right != nullptr) node->right->parent = node;rightNode->parent = node->parent;if (node->parent == nullptr) root = rightNode;else if (node == node->parent->left) node->parent->left = rightNode;else node->parent->right = rightNode;rightNode->left = node;node->parent = rightNode;}void rotateRight(Node* node) {Node* leftNode = node->left;node->left = leftNode->right;if (node->left != nullptr) node->left->parent = node;leftNode->parent = node->parent;if (node->parent == nullptr) root = leftNode;else if (node == node->parent->left) node->parent->left = leftNode;else node->parent->right = leftNode;leftNode->right = node;node->parent = leftNode;}void inorderHelper(Node* root) {if (root == nullptr) return;inorderHelper(root->left);std::cout << root->data << " ";inorderHelper(root->right);}void generateGraphvizHelper(std::ofstream& file, Node* root) {if (root->left != nullptr) {file << root->data << " -> " << root->left->data << ";\n";generateGraphvizHelper(file, root->left);} else {file << "null" << root->data << "L [shape=point];\n";file << root->data << " -> null" << root->data << "L;\n";}if (root->right != nullptr) {file << root->data << " -> " << root->right->data << ";\n";generateGraphvizHelper(file, root->right);} else {file << "null" << root->data << "R [shape=point];\n";file << root->data << " -> null" << root->data << "R;\n";}}
};int main() {RedBlackTree tree;tree.insert(10);tree.insert(20);tree.insert(30);tree.insert(15);tree.insert(25);tree.insert(5);tree.generateGraphviz("rbtree.dot");std::cout << "Graphviz dot file generated as rbtree.dot" << std::endl;return 0;
}
// Output
digraph G {
10 -> 5;
10 -> 20;
20 -> 15;
20 -> 30;
30 -> 25;
null5L [shape=point];
5 -> null5L;
null5R [shape=point];
5 -> null5R;
null15L [shape=point];
15 -> null15L;
null15R [shape=point];
15 -> null15R;
null25L [shape=point];
25 -> null25L;
null25R [shape=point];
25 -> null25R;
null30L [shape=point];
30 -> null30L;
null30R [shape=point];
30 -> null30R;
}10/  \
5    20/  \15  30/25

总结

红黑树(Red-Black Tree)是一种自平衡二叉搜索树,常用于需要高效插入、删除和查找操作的数据结构中。红黑树的特点包括每个节点是红色或黑色、根节点是黑色、红色节点的子节点必须是黑色、从任一节点到其每个叶子节点的路径上的黑色节点数目相同。

这篇关于C++ -- 红黑树的基本操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070122

相关文章

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i