【电子实验4】TDA2030功率放大电路

2024-06-17 17:04

本文主要是介绍【电子实验4】TDA2030功率放大电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🚩 WRITE IN FRONT 🚩       

  • 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎
  • 🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评百大博主、华为云享专家、阿里云专家博主、掘金优秀创作者、腾讯云年度进取作者、全网粉丝量8w+、个人社区人数累计4w+、全网访问量100w+ 🏅
  • 🆔 本文章内容由 謓泽 原创 如需相关转载请提前告知博主 ⚠
  • 📑 创作时间:2022 年 2 月 22 日 📅
  • 📝 个人主页:謓泽的博客 📃
  • 📣 专栏系列:电子实验_謓泽的博客-CSDN博客📃
  • 🙌 Gitee:謓泽 (wsxsx) - Gitee.com ⭐️
  • 🎁 点赞👍+ 收藏⭐️+ 留言📝​
  • ✉️ 我们并非登上我们所选择的舞台,演出并非我们所选择的剧本 📩


目录

🚀write in front🚀    

🔧电子制作🔧

🔧TDA2030芯片🔧

🔧电路元器件🔧 

🔧仿真图🔧

🔧电路实物🔧

🔧电路原理简介🔧 

🔧最后🔧 


🔧电子制作🔧

TDA2030集成功率放大电路。

推荐在看这篇博客的时候可以看看博主写的运放的这篇博客,这样你对这个电路理解会更加的深刻,如下↓

关于“运放“这些知识点_打打酱油desu-CSDN博客


🔧TDA2030芯片🔧

在做TDA2030功率放大电路我们首先要知道TDA2030功率放大电路当中的TDA2030的芯片是怎么样子的内部的结构电路图这些什么的,这样我们才能够把这个TDA2030功率放大电路给做出来,那么下面就来介绍下TDA2030芯片

TDA2030是将分立式功率放大电路集成到芯片里的音频放大器,它有效地解决了分立式功率放大电路常见的一些问题,常采用V型5脚单列直插式塑料封装结构。

TDA2030它的特性是如下↓

输出电流大。

谐波失真小。谐波是指正常电流波形的一种失真。

具有输出对地短路保护功能。主要指的是在工作电路中,出现短路等异常时,能够及时将电路切断并进行报警,从而避免危害进一步的扩大。

自动限制功耗,保护输出晶体管工作在安全工作区。

内置过热保护电路。防止电路出现过热产生保护。

功能框图
  • 引脚定义如下↓

①脚是正向输入端。

②脚是反向输入端。

③脚是负电源输入端。

④脚是功率输出端。

⑤脚是正电源输入端。

  • 极限参数如下↓

TDA2030极限参数

参数名称

极限值

单位

电源电压(Vs)

±22

V

输入电压(Vin)

Vs

V

差分输入电压(Vdi)

±15

V

峰值输出电流(Io)

3.5

A

耗散功率(Ptot)(Vdi)

20

W

工作结温(Tj)

-40-+150

存储结温(Tstg)

-40-+150


🔧电路元器件🔧 

名称编号参数数值
电阻R1100kΩ
滑动变阻器

R2

20kΩ
电阻R3100kΩ
电阻R4100kΩ
电阻

R5

4.7kΩ
电阻R6150kΩ
电阻R7
极性电容C1100uf
瓷片电容C2

0.1uf

极性电容C31uf
极性电容C422uf
极性电容C522uf
瓷片电容C6

0.1uf

极性电容C72200uf
TDA2030芯片..
整流二极管D1 1N4001
整流二极管D1 1N4001
电源电压VCC5V
接地(3个)GND.
扬声器Ls18Ω 2W

🔧仿真图🔧


🔧电路实物🔧


🔧电路原理简介🔧 

实际上TDA2030就是一个运放电路,我们知道运放可以将输入端的电压放大数以万倍也能为我们提供一定的驱动能力。那么就来说说这个的电路的原理如下↓

第一:我们必须要明确它的输入端和输出端在那里分别是1脚和2脚,vi(输入端)也就是扬声器输入的端口,那么输出端就是在4脚那里也就是扬声器那里。

那么Vcc当中的电源分别放了一个瓷片电容(0.1uf)和另一个极性电容(100uf),这个作用实际上是去耦:去耦电容是电路中装设在元件的电源端的电容,此电容可以提供较稳定的电源,同时也可以降低元件耦合到电源端的噪声起到了一个抗干扰的作用,间接可以减少其他元件受此元件噪声的影响。

在扬声器旁别的瓷片电容(0.1uf)和电阻(1Ω) 串联组成消振电路,称为RC消振(减小自激振荡)如果存在电路设计不合理等因素会出现高频或超高频的啸叫,这种现象称为振荡,消除这种有害振荡的电路称为消振电路。

在电路中也有钳位电路它的作用实际上就是将输出电压钳制在电源电压的范围内,以免对造成元器件的损坏!

VS+经过100K欧姆,100K欧姆电阻和22uf电容并联到GND构成了偏置电路。直流电源经过了100k欧姆的电阻进入了运放的输入端,这里的100K欧姆电阻和22uf电容并联实际上的作用就是:阻止直流信号通过,而允许交流信号通过。或者是减小低频信号的通过能力,增加高频信号的通过能力。

注意:首先我们知道这个电路它是一个单电源供电的电路,可是我们的电路音频信号是交流电,有正和负的。所以我们这里要加直流偏置电路。其实就相当于用直流电压将信号的负半周期给抬上去(相当于一个加法运算电路),抬到GND上面去,这样我们的信号就可以正常地经过运放了。好耶(^∀^●)ノシ

那么有小伙伴可能就会问了:我们最终需要的可是正负的交流信号啊謓泽,你这样怎么搞,嘿嘿,别忘记我们这里可是还有一个"大杀器"那就是我们输出端这里的 2200 uf的电容鸭,把直流的信号给拦截,让交流电通过最终不就是交流信号了,最终就可以得到输出后的交流信号了。


🔧最后🔧 

那么这篇电子实验的博客就先到这里了,本篇实训说真的原理还是挺多的,需要好好消化,唉还是要多多去实践理论知识也是需要增强才可以。加油💪,那么觉得对你有帮助的话麻烦点个👍非常感谢你的支持(●'◡'●)

 

这篇关于【电子实验4】TDA2030功率放大电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070034

相关文章

电子盖章怎么做_电子盖章软件

使用e-章宝(易友EU3000智能盖章软件)进行电子盖章的步骤如下: 一、准备阶段 软件获取: 访问e-章宝(易友EU3000智能盖章软件)的官方网站或相关渠道,下载并安装软件。账户注册与登录: 首次使用需注册账户,并根据指引完成注册流程。注册完成后,使用用户名和密码登录软件。 二、电子盖章操作 文档导入: 在e-章宝软件中,点击“添加”按钮,导入待盖章的PDF文件。支持批量导入多个文件,

高性能并行计算华为云实验五:

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建PageRank源码 3.2 makefile的创建和编译 3.3 主机配置文件建立与运行监测 四、实验结果与分析 4.1 采用默认的节点数量及迭代次数进行测试 4.2 分析并行化下节点数量与耗时的变化规律 4.3 分析迭代次数与耗时的变化规律 五、实验思考与总结 5.1 实验思考 5.2 实验总结 E

物联网系统运维——移动电商应用发布,Tomcat应用服务器,实验CentOS 7安装JDK与Tomcat,配置Tomcat Web管理界面

一.Tomcat应用服务器 1.Tomcat介绍 Tomcat是- -个免费的开源的Ser Ivet容器,它是Apache基金会的Jakarta 项目中的一个核心项目,由Apache, Sun和其他一 些公司及个人共同开发而成。Tomcat是一一个小型的轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP程序的首选。 在Tomcat中,应用程序的成部署很简

STM32HAL库--SDRAM实验(速记版)

STM32F429IGT6 自带了 256K 字节的 SRAM,对一般应用来说,已经足够了,不过在一些对内存要求高的场合, STM32F429 自带的这些内存就不够用了。比如使用 LTDC 驱动RGB 屏、跑算法或者跑 GUI 等,就可能不太够用,所以阿波罗 STM32F429 开发板板载了一颗 32M 字节容量的 SDRAM 芯片:W9825G6KH,满足大内存使用的需求。 1

Circuit Breaker(电路熔断器)模式原理

文章目录 简介参考资料 简介 我们知道,在微服务架构中,一个服务通过远程调用去访问另一个服务是很常见的事,服务运行在不同的进程甚至不同的机器上,服务间的调用可能会一直得不到响应直到超时失败,更严重的是,如果有多个远程调用同时请求了一个没有响应的服务,可能会耗尽系统的资源从而导致跨服务的级联失败,为了防止这种灾难性的结果,有人(据说是一个叫Michael Nygard的人)就提出了

HCIA 19 结束 企业总部-分支综合实验(下)

3.6出口NAT配置可以访问互联网 配置NAT使内网可以访问公网8.8.8.8,当前总部PC1 PING不通公网地址8.8.8.8。 3.6.1总部配置NAT访问互联网 步骤1:配置NAT acl number 2000    rule 5 permit source 192.168.0.0 0.0.255.255 # interface GigabitEthernet0/0/2

运算放大器(运放)低通滤波反相放大器电路和积分器电路

低通滤波反相放大器电路 运放积分器电路请访问下行链接 运算放大器(运放)积分器电路 设计目标 输入ViMin输入ViMax输出VoMin输出VoMaxBW:fp电源Vee电源Vcc–0.1V0.1V–2V2V2kHz–2.5V2.5V 设计说明 这款可调式低通反相放大器电路可将信号电平放大 26dB 或 20V/V。R2 和 C1 可设置此电路的截止频率。此电路的频率响应与无源 RC 滤

STM32G030F6使用CubeMx配置PWM实验

1. 使用 CubeMx 创建 PWM 工程 打开 CubeMx 软件,选中我们此次使用的单片机型号 STM32G030F6P6 ,点击 StartProject. 配置定时器 配置定时器1的通道1和通道2 产生PWM; 设置定时器1的主频:设置了( 63 + 1) 分频即定时器主频为1M 设置PWM定时的周期计数为 1000 即 1000HZ 设置通道一 翻转的计数值为 500 即

STM32G030F6使用CubeMx配置DMA读取多通道ADC实验

1. 使用 CubeMx 创建 ADC 工程 打开 CubeMx 软件,选中我们此次使用的单片机型号 STM32G030F6P6 ,点击 StartProject. 先配置一下串口,用来打印相关信息 再来配置 ADC 配置DMA PS:DMA 需要要配置成循环模式,否则只填满一次缓存数组后就停止工作,需要重调用启动 DMA 的函数. 配置时钟 ps:本实验使用内部高速时钟

STM32G030F6使用CubeMx配置RTC及闹钟实验

1. 使用 CubeMx 创建 RTC 工程 打开 CubeMx 软件,选中我们此次使用的单片机型号 STM32G030F6P6 ,点击 StartProject. 先配置一下串口,用来打印相关信息 再来配置 RTC 配置时钟 ps:本实验使用内部低速时钟测试,未使用外部晶振. 配置工程相关选项 配置完成后点击右上角 GENERATE CODE完成工程的创建 2. 编程