fork()写时复制原理

2024-06-17 15:52
文章标签 原理 fork 复制 写时

本文主要是介绍fork()写时复制原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

fork()系统调用创建一个子进程,是父进程的一个副本,父子进程仅有pid的区别。

子进程拥有与父进程相同的进程虚拟地址空间,但如果在fork()时复制父进程的整个地址空间,虽然实现了创建副本的目的,但这种做法不太聪明,因为直接复制父进程的所有内存页是非常耗费资源的,特别是当父进程占用了大量内存时。

为了解决这个问题,操作系统使用了一种叫做 Copy-On-Write(写时复制) 的技术。

思路:

1.当子进程对地址空间上的数据进行读操作时,没必要重新创建一个副本供子进程来读,直接读父进程的地址可以达到同样的效果

2.当子进程对地址空间上的某一页进行写(修改)操作时,由于逻辑上父子进程拥有独立的地址空间,此时修改的必须是子进程自己的地址空间,此时再分配给子进程一页地址空间,这一页空间才是真正意义上属于子进程自己的

实现

fork() 的实现细节

当父进程调用 fork() 时,操作系统会进行以下操作:

  1. 创建子进程:内核会为子进程分配一个新的进程控制块(Process Control Block,PCB),其中包括子进程的进程 ID、进程状态等信息。
  2. 复制页表:页表是一个数据结构,映射进程的虚拟地址空间到物理内存地址。fork() 时,内核不会复制父进程的所有内存,而是只复制父进程的页表,使子进程的页表指向相同的物理内存页。
  3. 设置内存页为只读:为了实现 Copy-On-Write 机制,内核会将父进程和子进程的内存页标记为只读。这样,任何对这些页的写操作都会触发一个页面保护异常(page fault)。
  4. 共享文件描述符:父进程和子进程共享打开的文件描述符,引用计数会增加。

写时复制(copy on write)的实现细节

  1. 初始状态
    • 当父进程调用 fork() 时,子进程会共享父进程的所有内存页,这些内存页都会被标记为只读。
  2. 触发写保护
    • 当父进程或子进程尝试写入某个内存页时,由于该页是只读的,会触发页面保护异常(page fault)。
  3. 处理写保护异常
    • 操作系统捕获这个异常,并执行以下步骤:
      1. 分配一个新的物理内存页。
      2. 将原来只读内存页的内容复制到新的物理页中。
      3. 更新当前进程的页表,使该虚拟地址指向新的物理页。
      4. 将新的物理页设置为可写。

这样,只有试图写入的内存页会被复制,其他未被修改的内存页依然是共享的和只读的。

示例

假设有一个进程 P,其内存布局如下:

虚拟地址物理地址内容
0x10000xA000Data1
0x20000xB000Data2
  1. 调用 fork()

    • 创建子进程 C,复制页表并共享内存页。
进程虚拟地址物理地址内容
P0x10000xA000Data1
P0x20000xB000Data2
C0x10000xA000Data1
C0x20000xB000Data2
  1. 标记为只读
    • 内核将这些内存页标记为只读。
  2. 子进程修改内存页
    • 假设子进程 C 修改 0x1000 地址的内容,触发页面保护异常。
  3. 处理页面保护异常
    • 分配一个新的物理页 0xC000
    • 0xA000 页的内容复制到 0xC000
    • 更新子进程 C 的页表,使 0x1000 虚拟地址指向 0xC000
    • 0xC000 设置为可写。
进程虚拟地址物理地址内容
P0x10000xA000Data1
P0x20000xB000Data2
C0x10000xC000Data1 (Modified)
C0x20000xB000Data2

优点

  1. 节省内存:未修改的内存页依然共享,只有被修改的页才会被复制,节省了大量内存。
  2. 提高效率:避免在 fork() 调用时立即复制整个地址空间,提高了系统调用的性能。

推荐学习 https://xxetb.xetslk.com/s/p5Ibb

这篇关于fork()写时复制原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069877

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

禁止复制的网页怎么复制

禁止复制的网页怎么复制 文章目录 禁止复制的网页怎么复制前言准备工作操作步骤一、在浏览器菜单中找到“开发者工具”二、点击“检查元素(inspect element)”按钮三、在网页中选取需要的片段,锁定对应的元素四、复制被选中的元素五、粘贴到记事本,以`.html`为后缀命名六、打开`xxx.html`,优雅地复制 前言 在浏览网页的时候,有的网页内容无法复制。比如「360

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。

PHP原理之内存管理中难懂的几个点

PHP的内存管理, 分为俩大部分, 第一部分是PHP自身的内存管理, 这部分主要的内容就是引用计数, 写时复制, 等等面向应用的层面的管理. 而第二部分就是今天我要介绍的, zend_alloc中描写的关于PHP自身的内存管理, 包括它是如何管理可用内存, 如何分配内存等. 另外, 为什么要写这个呢, 因为之前并没有任何资料来介绍PHP内存管理中使用的策略, 数据结构, 或者算法. 而在我们

Smarty模板执行原理

为了实现程序的业务逻辑和内容表现页面的分离从而提高开发速度,php 引入了模板引擎的概念,php 模板引擎里面最流行的可以说是smarty了,smarty因其功能强大而且速度快而被广大php web开发者所认可。本文将记录一下smarty模板引擎的工作执行原理,算是加深一下理解。 其实所有的模板引擎的工作原理是差不多的,无非就是在php程序里面用正则匹配将模板里面的标签替换为php代码从而将两者

Restful API 原理以及实现

先说说API 再说啥是RESRFUL API之前,咱先说说啥是API吧。API大家应该都知道吧,简称接口嘛。随着现在移动互联网的火爆,手机软件,也就是APP几乎快爆棚了。几乎任何一个网站或者应用都会出一款iOS或者Android APP,相比网页版的体验,APP确实各方面性能要好很多。 那么现在问题来了。比如QQ空间网站,如果我想获取一个用户发的说说列表。 QQ空间网站里面需要这个功能。