tensorflow实现非线性回归实例

2024-06-17 13:58

本文主要是介绍tensorflow实现非线性回归实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import tensorflow as tf
import numpy as np
import os
import matplotlib.pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'# R25=10k B25/50=3470 NTC热敏电阻特性数据表# 加载样本数据 格式:电阻值(K)   温度值(℃)
dat = np.loadtxt('trainData.txt')# 数据归一化处理
R = dat[:,0]
T = dat[:,1]R_K = R.max()-R.min()
R_B = R.min()T_K = T.max()-T.min()
T_B = T.min()R = (R - R_B)/R_K
T = (T - T_B)/T_KR = R.reshape(141,1)
T = T.reshape(141,1)X = tf.placeholder(tf.float32, shape = [None, 1])
Y = tf.placeholder(tf.float32, shape = [None, 1])# 定义层
def add_layer(input,in_size,out_size,activation_fun):""":param input: 输入数据:param in_size: 输入矩阵列数:param out_size: 输出矩阵列数:param activation_fun:激活函数:return:输出矩阵"""weights = tf.Variable(tf.random_normal([in_size, out_size]))bias = tf.Variable(tf.zeros([1, out_size]))z_i = tf.matmul(input, weights) + biasreturn activation_fun(z_i)# 正向传播#  添加隐藏层 该层10个神经元
out_h = add_layer(X,1,10,tf.nn.sigmoid)# 输出层
out = add_layer(out_h,10,1,tf.nn.sigmoid)# 定义损失函数
loss = tf.reduce_mean(tf.reduce_sum(tf.square(out - Y), reduction_indices=[1]))# 学习率为
learning_rate = 20.2# 梯度下降优化器,让损失最小化
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)# 初始化tensor flow中的变量
init = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init)for i in range(10000):sess.run(train_step, feed_dict={X: R, Y: T})if i % 100== 0:# 打印损失值e = sess.run(loss, feed_dict={X: R, Y: T})print(e)# 预测值y = sess.run(out, feed_dict={X: R, Y: T})y = y*T_K+T_Bdat_R = dat[:,0]dat_T = dat[:,1]plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus'] = Falseplt.xlabel("电阻")plt.ylabel("温度")plt.plot(dat_R ,dat_T,'r',label='R-T特性曲线')plt.plot(dat_R,y,label='拟合曲线')plt.legend()plt.grid()plt.show()

运行结果:

在这里插入图片描述

这篇关于tensorflow实现非线性回归实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069634

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

swiper实例

大家好,我是燐子,今天给大家带来swiper实例   微信小程序中的 swiper 组件是一种用于创建滑动视图的容器组件,常用于实现图片轮播、广告展示等效果。它通过一系列的子组件 swiper-item 来定义滑动视图的每一个页面。 基本用法   以下是一个简单的 swiper 示例代码:   WXML(页面结构) <swiper autoplay="true" interval="3

Java面试题:通过实例说明内连接、左外连接和右外连接的区别

在 SQL 中,连接(JOIN)用于在多个表之间组合行。最常用的连接类型是内连接(INNER JOIN)、左外连接(LEFT OUTER JOIN)和右外连接(RIGHT OUTER JOIN)。它们的主要区别在于它们如何处理表之间的匹配和不匹配行。下面是每种连接的详细说明和示例。 表示例 假设有两个表:Customers 和 Orders。 Customers CustomerIDCus

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python