单层感知器实现逻辑与运算

2024-06-17 13:58

本文主要是介绍单层感知器实现逻辑与运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

感知器是一个用来做模式识别最简单的模型,由于仅有一个神经元,所以只能用来处理线性可分的两类模式识别。

模型

w1
w2
w3
wn
x1
x2
x3
xn
b
激活函数f
输出y

u = ∑ i = 1 i = n w i x i + b u = \sum_{i=1}^{i=n} w_{i}x_{i} + b u=i=1i=nwixi+b

y = s g n ( u ) y = sgn (u) y=sgn(u)

sgn阶跃函数,当u>=0时,y=1;当u<0时,y=0。

设输入为x={x1,x2,…,xn},
若:
y = f ( w , x , b ) = 1 y=f(w,x,b) =1 y=f(w,x,b)=1则认为x属于类L1。
若:
y = f ( w , x , b ) = 0 y=f(w,x,b) =0 y=f(w,x,b)=0则认为x属于类L2。

分类原理就是通过一种算法,不断调整w、b的参数,使得对应输入样本满足期望的输出。

纠错学习

设输入为x,经过神经元后得到输出y,称y为实际输出或目标输出,对于输入x其实我们希望输出为d,称d为期望输出。期望输出与目标输出存在误差,用e表示。
e ( n ) = y ( n ) − d ( n ) e(n) = y(n) - d(n) e(n)=y(n)d(n)
通过不断的调整神经元内部参数(w,b)使得误差e最小化,就完成了学习的过程。每次调整的量可表示为:
Δ w ( n ) = η e ( n ) x ( n ) \Delta w(n) = \eta e(n)x(n) Δw(n)=ηe(n)x(n)
Δ b ( n ) = η e ( n ) \Delta b(n) = \eta e(n) Δb(n)=ηe(n)
调整后参数可表示为:
w ( n + 1 ) = w ( n ) + Δ w ( n ) w(n+1) = w(n)+ \Delta w(n) w(n+1)=w(n)+Δw(n)
b ( n + 1 ) = b ( n ) + Δ b ( n ) b(n+1) = b(n)+\Delta b(n) b(n+1)=b(n)+Δb(n)

代码实例

逻辑与的规则为:

0 and 0 is 0
0 and 1 is 0
1 and 0 is 0
1 and 1 is 1

即当输入x = (1,1),期望输出为1,其余输入,期望输出为0
设感知器有两个输入端x1和x2 ,则:

u = w 1 x 1 + w 2 x 2 + b u = w_{1}x_{1} + w_{2}x_{2}+b u=w1x1+w2x2+b
实际输出为:
y = s g n ( u ) ( u > = 0 , y = 1 ; u < 0 , y = 0 ) y= sgn(u) (u>=0,y=1;u<0,y=0) y=sgn(u)u>=0,y=1;u<0,y=0

通过多次迭代,通过不断的调整w1、w2、b参数,使得误差e逐渐减小。即实际输出不断逼近期望值。

import numpy as np
import matplotlib.pyplot as plt# 定义输入数据,有4种输入情况
x = np.array([[0,0],[0,1],[1,0],[1,1]])# 输出期望值
d = np.array([0,0,0,1])# 初始化w、b参数,w1=0.2,w2=0.6,b=1;
w = np.array([[0.2,0.6]])
b = 1;# 定义学习速率
t = 0.03# 定义sgn函数
def step(a):if a>0:return 1else:return 0# w、b更新
# dat 输入数据
# lable 输入对应的期望
def updatePar(dat,lable):global w,b# 实际输出 y = WX+b ,WX为矩阵相乘y = step(np.dot(w,np.array(dat).T) + b)# 计算实际输出与期望之差e = lable - y# 调整w、b参数w = w + t*e*datb = b + t*e
# 训练全部输入
def train():for index in range(4):updatePar(x[index],d[index])# 准确度
accuracy = []
# 测试
# 返回0~1之间的数,等于1时表示准确率100%
def test():k = 0;for index in range(4):y = step(np.dot(w,np.array(x[index]).T) + b)if (y == d[index]):k = k + 1accuracy.append(k*0.25)
# 训练、测试
for index in range(30):train()test()# 打印最终w,b的值
print(str(w) +"---"+ str(b))plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.xlabel("迭代次数")
plt.ylabel("准确率")
plt.plot(accuracy)
plt.show()

结果:

w=[[ 0.05  0.12]]   b=-0.14
w1 = 0.05
w2 = 0.12

在这里插入图片描述

这篇关于单层感知器实现逻辑与运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069633

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J