单层感知器实现逻辑与运算

2024-06-17 13:58

本文主要是介绍单层感知器实现逻辑与运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

感知器是一个用来做模式识别最简单的模型,由于仅有一个神经元,所以只能用来处理线性可分的两类模式识别。

模型

w1
w2
w3
wn
x1
x2
x3
xn
b
激活函数f
输出y

u = ∑ i = 1 i = n w i x i + b u = \sum_{i=1}^{i=n} w_{i}x_{i} + b u=i=1i=nwixi+b

y = s g n ( u ) y = sgn (u) y=sgn(u)

sgn阶跃函数,当u>=0时,y=1;当u<0时,y=0。

设输入为x={x1,x2,…,xn},
若:
y = f ( w , x , b ) = 1 y=f(w,x,b) =1 y=f(w,x,b)=1则认为x属于类L1。
若:
y = f ( w , x , b ) = 0 y=f(w,x,b) =0 y=f(w,x,b)=0则认为x属于类L2。

分类原理就是通过一种算法,不断调整w、b的参数,使得对应输入样本满足期望的输出。

纠错学习

设输入为x,经过神经元后得到输出y,称y为实际输出或目标输出,对于输入x其实我们希望输出为d,称d为期望输出。期望输出与目标输出存在误差,用e表示。
e ( n ) = y ( n ) − d ( n ) e(n) = y(n) - d(n) e(n)=y(n)d(n)
通过不断的调整神经元内部参数(w,b)使得误差e最小化,就完成了学习的过程。每次调整的量可表示为:
Δ w ( n ) = η e ( n ) x ( n ) \Delta w(n) = \eta e(n)x(n) Δw(n)=ηe(n)x(n)
Δ b ( n ) = η e ( n ) \Delta b(n) = \eta e(n) Δb(n)=ηe(n)
调整后参数可表示为:
w ( n + 1 ) = w ( n ) + Δ w ( n ) w(n+1) = w(n)+ \Delta w(n) w(n+1)=w(n)+Δw(n)
b ( n + 1 ) = b ( n ) + Δ b ( n ) b(n+1) = b(n)+\Delta b(n) b(n+1)=b(n)+Δb(n)

代码实例

逻辑与的规则为:

0 and 0 is 0
0 and 1 is 0
1 and 0 is 0
1 and 1 is 1

即当输入x = (1,1),期望输出为1,其余输入,期望输出为0
设感知器有两个输入端x1和x2 ,则:

u = w 1 x 1 + w 2 x 2 + b u = w_{1}x_{1} + w_{2}x_{2}+b u=w1x1+w2x2+b
实际输出为:
y = s g n ( u ) ( u > = 0 , y = 1 ; u < 0 , y = 0 ) y= sgn(u) (u>=0,y=1;u<0,y=0) y=sgn(u)u>=0,y=1;u<0,y=0

通过多次迭代,通过不断的调整w1、w2、b参数,使得误差e逐渐减小。即实际输出不断逼近期望值。

import numpy as np
import matplotlib.pyplot as plt# 定义输入数据,有4种输入情况
x = np.array([[0,0],[0,1],[1,0],[1,1]])# 输出期望值
d = np.array([0,0,0,1])# 初始化w、b参数,w1=0.2,w2=0.6,b=1;
w = np.array([[0.2,0.6]])
b = 1;# 定义学习速率
t = 0.03# 定义sgn函数
def step(a):if a>0:return 1else:return 0# w、b更新
# dat 输入数据
# lable 输入对应的期望
def updatePar(dat,lable):global w,b# 实际输出 y = WX+b ,WX为矩阵相乘y = step(np.dot(w,np.array(dat).T) + b)# 计算实际输出与期望之差e = lable - y# 调整w、b参数w = w + t*e*datb = b + t*e
# 训练全部输入
def train():for index in range(4):updatePar(x[index],d[index])# 准确度
accuracy = []
# 测试
# 返回0~1之间的数,等于1时表示准确率100%
def test():k = 0;for index in range(4):y = step(np.dot(w,np.array(x[index]).T) + b)if (y == d[index]):k = k + 1accuracy.append(k*0.25)
# 训练、测试
for index in range(30):train()test()# 打印最终w,b的值
print(str(w) +"---"+ str(b))plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.xlabel("迭代次数")
plt.ylabel("准确率")
plt.plot(accuracy)
plt.show()

结果:

w=[[ 0.05  0.12]]   b=-0.14
w1 = 0.05
w2 = 0.12

在这里插入图片描述

这篇关于单层感知器实现逻辑与运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069633

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、