39、基于深度学习的(拼音)字符识别(matlab)

2024-06-17 12:12

本文主要是介绍39、基于深度学习的(拼音)字符识别(matlab),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、原理及流程

深度学习中常用的字符识别方法包括卷积神经网络(CNN)和循环神经网络(RNN)。

  1. 数据准备:首先需要准备包含字符的数据集,通常是手写字符、印刷字符或者印刷字体数据集。

  2. 数据预处理:对数据集进行预处理,包括归一化、去噪、裁剪等处理,以便更好地输入到深度学习模型中。

  3. 模型选择:选择合适的深度学习模型,常用的字符识别模型包括CNN和RNN。CNN主要用于图像数据的特征提取,RNN主要用于序列数据的建模。

  4. 模型构建:根据数据集的特点和需求构建深度学习模型,设置合适的层数、节点数和激活函数等参数。

  5. 模型训练:使用已标记好的数据集对模型进行训练,通过反向传播算法不断调整模型参数,使其能够更好地拟合数据集。

  6. 模型评估:使用未标记的数据集对训练好的模型进行评估,评估模型的准确率、召回率、F1值等指标。

  7. 模型优化:根据评估结果对模型进行调优,可以对模型结构、参数、数据集等方面进行优化。

  8. 预测与应用:使用训练好的模型对新数据进行字符识别预测,应用到实际场景中,如车牌识别、验证码识别等领域。

2、准备工作

1)无噪声拼音字符的生成

代码

function [alphabet,targets] = prprob()letterA =  [0 0 1 0 0 ...0 1 0 1 0 ...0 1 0 1 0 ...1 0 0 0 1 ...1 1 1 1 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterB =  [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ]';letterC =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterD  = [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ]';letterE  = [1 1 1 1 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';letterF =  [1 1 1 1 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ]';letterG =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 1 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterH =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterI =  [0 1 1 1 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 1 1 1 0 ]';letterJ =  [1 1 1 1 1 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...1 0 1 0 0 ...0 1 0 0 0 ]';letterK =  [1 0 0 0 1 ...1 0 0 1 0 ...1 0 1 0 0 ...1 1 0 0 0 ...1 0 1 0 0 ...1 0 0 1 0 ...1 0 0 0 1 ]';letterL =  [1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';letterM =  [1 0 0 0 1 ...1 1 0 1 1 ...1 0 1 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterN =  [1 0 0 0 1 ...1 1 0 0 1 ...1 1 0 0 1 ...1 0 1 0 1 ...1 0 0 1 1 ...1 0 0 1 1 ...1 0 0 0 1 ]';letterO =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterP =  [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ]';letterQ =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 1 0 1 ...1 0 0 1 0 ...0 1 1 0 1 ]';letterR =  [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 1 0 0 ...1 0 0 1 0 ...1 0 0 0 1 ]';letterS =  [0 1 1 1 0 ...1 0 0 0 1 ...0 1 0 0 0 ...0 0 1 0 0 ...0 0 0 1 0 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterT =  [1 1 1 1 1 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ]';letterU =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterV =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ]';letterW =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 1 0 1 ...1 1 0 1 1 ...1 0 0 0 1 ]';letterX =  [1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ...0 1 0 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterY =  [1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ]';letterZ =  [1 1 1 1 1 ...0 0 0 0 1 ...0 0 0 1 0 ...0 0 1 0 0 ...0 1 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,letterH,...letterI,letterJ,letterK,letterL,letterM,letterN,letterO,letterP,...letterQ,letterR,letterS,letterT,letterU,letterV,letterW,letterX,...letterY,letterZ];targets = eye(26);

试图效果

无噪声A B C X Y Z视图

 

 

2)有噪声拼音字符的生成

代码

有噪声A B C X Y Z视图

numNoise = 30;
Xn = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*0.2,0),1);
Tn = repmat(T,1,numNoise);

视图效果

 

 

 

3、 创建第一个神经网络

说明

针对模式识别建立的具有 25 个隐藏神经元的前馈神经网络。

由于神经网络以随机初始权重进行初始化,因此每次运行该示例进行训练后的结果都略有不同。

代码

%25 个隐藏神经元的前馈神经网络。
setdemorandstream(pi);
net1 = feedforwardnet(25);
%显示网络
view(net1);

视图效果

4、 训练第一个神经网络

说明

无噪声拼音字符数据集进行训练,当网络针对训练集或验证集不再可能有改善时,训练停止。

函数 train 将数据划分为训练集、验证集和测试集。验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。

代码

%当网络针对训练集或验证集不再可能有改善时,训练停止。
net1.divideFcn = '';
%函数 train 将数据划分为训练集、验证集和测试集。
%验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。
net1 = train(net1,X,T,nnMATLAB);

 视图结果

5、 训练第二个神经网络

说明

针对含噪数据训练第二个网络,并将其泛化能力与第一个网络进行比较。

代码

net2 = feedforwardnet(25);
net2 = train(net2,Xn,Tn,nnMATLAB);

视图效果

 6、测试两个神经网络

说明

用测试数据集对训练好的网络1和网络2进行测试,X轴表示噪声强度Y轴表示误差百分比

代码

noiseLevels = 0:.05:1;
numLevels = length(noiseLevels);
percError1 = zeros(1,numLevels);
percError2 = zeros(1,numLevels);
for i = 1:numLevelsXtest = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*noiseLevels(i),0),1);Y1 = net1(Xtest);percError1(i) = sum(sum(abs(Tn-compet(Y1))))/(26*numNoise*2);Y2 = net2(Xtest);percError2(i) = sum(sum(abs(Tn-compet(Y2))))/(26*numNoise*2);
endfigure(3)
plot(noiseLevels,percError1*100,'--',noiseLevels,percError2*100);
title('识别误差百分比');
xlabel('噪声水平');
ylabel('误差');
legend('网络1','网络2','Location','NorthWest')

试图效果

 

7、总结 

基于深度学习的拼音字符识别在MATLAB中的总体流程如下:

  1. 数据集准备:收集包含拼音字符的数据集,可以是经过标记的拼音字符图片或者声音数据。

  2. 数据预处理:对数据集进行预处理,包括图像去噪、裁剪、归一化等处理,或者对声音数据进行特征提取、转换为图像数据等处理。

  3. 构建深度学习模型:选择适合拼音字符识别任务的深度学习模型,可以选择卷积神经网络(CNN)、循环神经网络(RNN)或者组合模型等。

  4. 模型训练:使用数据集对构建好的深度学习模型进行训练,调整模型参数使其能够更好地拟合数据。

  5. 模型评估:使用未标记的数据集对训练好的模型进行评估,评估模型的准确率、召回率、F1值等指标。

  6. 模型优化:根据评估结果对模型进行调优,可以调整模型结构、超参数,增加数据增强等方式来提高模型性能。

  7. 模型应用:将训练好的深度学习模型用于拼音字符识别任务,可以将其应用到实际场景中,如语音识别、文字转换等任务中。

以上是基于MATLAB的深度学习拼音字符识别的总体流程,具体实现细节可以根据具体需求和数据集的特点进行调整和优化。

主程序代码

%% 字符识别
%prprob 定义了一个包含 26 列的矩阵 X,每列对应一个字母。定义一个字母的 5×7 位图。
[X,T] = prprob;
%plotchar第三个字母 C 绘制为一个位图。
% figure(1)
% plotchar(X(:,3))
% title('不含噪声')
%% 创建第一个神经网络
%25 个隐藏神经元的前馈神经网络。
setdemorandstream(pi);
net1 = feedforwardnet(25);
%显示网络
view(net1);%% 训练第一个神经网络
%当网络针对训练集或验证集不再可能有改善时,训练停止。
net1.divideFcn = '';
%函数 train 将数据划分为训练集、验证集和测试集。
%验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。
net1 = train(net1,X,T,nnMATLAB);
%% 训练第二个神经网络
%针对含噪数据训练第二个网络,并将其泛化能力与第一个网络进行比较。
%数据集加噪声
numNoise = 30;
Xn = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*0.2,0),1);
Tn = repmat(T,1,numNoise);
figure(2)
plotchar(Xn(:,3))
title('含噪声')
%创建并训练第二个网络。
net2 = feedforwardnet(25);
net2 = train(net2,Xn,Tn,nnMATLAB);%% 测试两个神经网络
noiseLevels = 0:.05:1;
numLevels = length(noiseLevels);
percError1 = zeros(1,numLevels);
percError2 = zeros(1,numLevels);
for i = 1:numLevelsXtest = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*noiseLevels(i),0),1);Y1 = net1(Xtest);percError1(i) = sum(sum(abs(Tn-compet(Y1))))/(26*numNoise*2);Y2 = net2(Xtest);percError2(i) = sum(sum(abs(Tn-compet(Y2))))/(26*numNoise*2);
endfigure(3)
plot(noiseLevels,percError1*100,'--',noiseLevels,percError2*100);
title('识别误差百分比');
xlabel('噪声水平');
ylabel('误差');
legend('网络1','网络2','Location','NorthWest')

程序文件包

这篇关于39、基于深度学习的(拼音)字符识别(matlab)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069411

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;