《全网首发》平衡三进制图灵机的构建

2024-06-17 09:28

本文主要是介绍《全网首发》平衡三进制图灵机的构建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PS:以下内容均为本人原创,未经授权及许可,严禁引图、转载或加工,违者必究。

————2024年6月13号


1、图灵机的概述

图灵机(Turing machine)是一种理论计算模型,由英国数学家阿兰·图灵(Alan Turing)于1936年提出。它被用来研究计算过程的基本性质和计算理论的极限。图灵机被认为是现代计算机的理论基础。

1.1图灵机的组成部分:

  1. 无限长的纸带: 纸带被划分成一系列的方格,每个方格可以包含一个符号(例如0或1),纸带既可以向左也可以向右移动。
  2. 读写头: 读写头可以在纸带上移动,读取或写入符号。
  3. 状态寄存器: 状态寄存器存储着图灵机当前的状态。状态是有限的,可以是预定义的某一个状态集合中的一个。
  4. 状态转移函数: 这是一组规则,决定了图灵机在给定状态和读取到的符号时如何行动。规则包括:
    - 写入符号
     - 移动读写头(向左或向右)
    - 进入下一个状态

1.2图灵机的运行过程:

  1. 读写头读取纸带上的当前符号。
  2. 根据当前符号和当前状态,查找状态转移函数,决定接下来要执行的操作。
  3. 执行操作,更新纸带上的符号,移动读写头,更新状态寄存器中的状态。
  4. 重复上述步骤,直到达到某个停止状态(如果有的话)。

图灵机的主要意义在于它能够模拟任何计算过程,因此被称为通用图灵机(Universal Turing Machine)。任何可以被计算的问题,理论上都可以由图灵机来解决。这使得图灵机成为计算理论中的一个重要工具,用来定义和研究可计算性、算法的复杂性以及计算的极限。


2、平衡三进制图灵机的感想来源

        平时就喜欢逛blbl看看科普视频,是《苏联的三进制电脑》差评君写的,好像是几年前的视频了,那时就想那么厉害的东西没了真可惜,后面又看到很多人去辩论,呈现两边极化的现象,可见都没见过这东西,真不好评价。后面又详细的查了一下前苏联的资料,发现这东西是真的有趣,还发现很多人都想重新将这三进制计算捞回来。

        但是,三进制是它的优点也是它的缺点,自然界中太多都是两态的,如何做到三种稳定的状态是个问题,原生的三进制比二进制每1位多一状态,也就说信息密度更大,同时算的也多,理论上讲会快1.6倍左右,能实现所使用的零件也会更少,但前提是能实现,反正现在没人实现。


2.1平衡三进制的模拟

        因为硬件发展不起来,所以就不会有相应的系统与软件,就形成不了生态,简单来说,平衡三进制计算没戏,处非有研制硬件出来,而我又太想知道前苏联的三进制是怎样的,所以走了模拟一条路,虽然性能肯定不如原生的三进制计算机,但能先将它重现出来,后面如何优化,那就是后面的事了。

        道家说“道生一,一生二,二生三,三生万物”,儒家有“三人为众”及“三人行必有我师”,可见“三” 在我国传统文化中有着崇高的地位,现在就是二生三,用二进制来模拟三进制,如果能跑起来就会有优化的空间,从而不断的叠代,就像一个观点,人工智能不管你用的是什么进制,它的关键是你用的是什么样的算法。


2.2平衡三进制的二进制转述

        先看这有关三进制计算实现的一些猜想!,现在就是这样子弄;对于理论满分但从未实操过人来说,想在二进制的硬件上尽可能的高效的模拟平衡三进制,这就目前的最优法;虽然说弄出来的机器可能比原来的二进制效率还低,但是它能跑呀,如果硬件发展起来,那就可以替换,直接完成一波反超。

        二进制的1位,称为bit,可以表示0或1,然后8个bit表示1个字节(byte);相应的平衡三进制也这样的设定,1位三进制位,称为trit,可以表示T(-1)、0、1,然后6个trit表示1个三进制字节tryte;要用二进制的数,模拟平衡三进制的1位三进制位,至少要用2bit,所以在本文中:2bit=1trit;这种方法是可以跑来的,我已经用这种方式在图灵游戏中成功构建出平衡三进制全加法器,就是下图这样子的:

2.3平衡三进制的二进制编码

        使用的二进制编码为:T(00)、0(01或10)、11(11),这种方式的编码是我试了很多方案得到的最优解,这样的编码方式能极大的简化硬件的设计,对于0它为什么会有两个编码,最开始是不知道用那个好,图省事就放一起了,后面发现这两个放一起确实很好用,所以就固定一起了,平衡三进制最重要的一点就是对称,这就很平衡三进制了。

        也可以用非位置化系统来解释,00得为0、01或10得为1、11得为2,刚好是0、1、2是标准三进制的表示,转成平衡三进制就是T、0、1,再看看这文章:有趣的平衡三进制!!!,看平衡三进制的逻辑门部分,用什么样的编码方式能最简化表示,很多次尝试下来,就是上面的编码方式,先看下图:

举个逻辑与为例子:

  1. 当T(00)与T(00)时,两个二进制的AND门,得到结果为T(00)
  2. 当T(00)与0(01)时,两个二进制的AND门,得到结果为T(00)
  3. 当T(00)与1(11)时,两个二进制的AND门,得到结果为T(00)
  4. 当0(01)与T(00)时,两个二进制的AND门,得到结果为T(00)
  5. 当0(01)与0(01)时,两个二进制的AND门,得到结果为0(01)
  6. 当0(01)与1(11)时,两个二进制的AND门,得到结果为0(01)
  7. 当1(11)与T(00)时,两个二进制的AND门,得到结果为T(00)
  8. 当1(11)与0(01)时,两个二进制的AND门,得到结果为0(01)
  9. 当1(11)与1(11)时,两个二进制的AND门,得到结果为1(11)

        基本上没有问题了,但注意了0有两个编码,第五条,当0同时为01或10时,得到结果正确,但一个是01另一个是10,得到结果就是T(00)了,所以这种情况要单独处理,只要处理了0与0的情况,只一个或输出01或10即可,这样就得到了一个平衡三进制的与门了。

        同样的用两个或门、两个或非门、两个与非门,同样可以得到剩下的三个表,非门也很简单就是每一位取反,T(00)取反得1(11)、1(11)取反得T(00)、0(01)取反得0(10),看0它有两个编码的好处就体现出来了,量子计算机有叠加态,那三进制计算的0有两个编码(状态)也是正常的,就像它的布尔值:FALSE(T)、UNKNOWN(0)、TRUE(1),T表示假,0表示“二者”,1表示真。


3、平衡三进制基础门的构建

        先看上图,这个定律在二进制是管用的,也就是可以取反输入或输出就转换门的类型,然后我用上述二进制构建出来的平衡三进制门,也是管用的这没有想到吧,这是用二进制模拟的三进制,低层仍是二进制,但逻辑是平衡三进制,所以说原生的平衡三进制也是管用的,这个定律在平衡三进制上得到了扩展。


3.1平衡三进制逻辑与门

平衡三进制与门(TAND)

        如上图所示,用上面的编码方式,只用了两个二进制的与门就完成电路的大部分逻辑的构建,其中的两个XOR与AND,是为了检测双0的输入情况,如果是双0输入则默认输出01,其它输出两个二进制的与门的结果。


3.1平衡三进制逻辑或门

平衡三进制或门(TOR)

        如上图所示,电路并没有大的改变,只是将两个二进制的与门,换成了两个二进制的或门,就是那么简单,得到了平衡三进制的的或门(TOR),剩下的TNOR(或非)、TNAND(与非)、TXOR(异或)、TXNOR(同或)同理可得。


3.3平衡三进制与非门、或非门

平衡三进制与非门(TNAND)
平衡三进制或非门(TNOR)

3.4平衡三进制异或门、同或门

平衡三进制异或门(TXOR)
平衡三进制同或门(TXNOR)

3.5平衡三进制摩根定律的应用

        元件工坊构建出的平衡三进制础门,它们的真值表是对称的,这四个基础逻辑门分别是:TOR、TNOR、TNAND、TAND,你可以通过如下图所示的对输入取反(垂直箭头)对输出取反(水平箭头)来转换它们。

        先看它的取反,也就是T变1、1变T、0不变,用上述的编码方案,只要分别对每一位取反,即可得平衡三进制的非门,如下图所示:

平衡三进制非门(TNOT)

        也就是说,当它为TOR组件时,想变为TNAND组件,分别对它的两个输入,用TNOT组件取反,就得到了TNAND级件,如果对输出结果再取反,就变成了TAND组件,从或门变成了非门;同样的TXOR,对输出结果取反,就得到了TXNOR组件。


4、平衡三进制基础门构建2

4.1平衡三进制三与门

平衡三进制三与门真值表
平衡三进制三与门(T3AND)

        如上图所示,这个部件是将三个trit进行与操作;二进制的与门(两个才是真,一假则全假),平衡三进制的与门可以看上面的真值表,它也是类似,TAND它是如果一个输入为T则出T,两个输入为1则出1,其余都出0;然后先用两个平衡三进制与门得到结果,再用这个结果与第三个与门就可以得出结果;所以上述的部件分别判断了是否输入中有T、是否输入全为1、及其余情况的0,这样就可以得到平衡三进制的三与门了。


4.2平衡三进制三或门

平衡三进制三或门真值表
平衡三进制三或门(T3OR)

        如上图所示,这个部件是将三个trit进行或操作;与上面的方法类似,结合真值表,其中任意一个输入为1则出1,若三个输入都为T则出T,其它出0,这样就可以得到平衡三进制的三或门了。


4.3平衡三进制三态复用器

       全称三态多路复用器,当我们要用解码或加法器时,就要用到它,也就是三选一,这里有T(00)、0(01或10)、1(11),在平衡三进制全加器中有详细讲到,按照这思路就可以三选1的电路,那一亮就是那一路的数据,如下图所示:

三选1基础件1
三选1基础件2

        可以看上面的两个图,都是三选1基础件,这个基础件的作用就是:输入00第一路亮绿灯,其它路红灯;输入01或10第二路亮绿灯,其它路红灯;输入11第三路亮绿灯,其它路红灯;这样再加上六个通路切换嚣,就可以构建出一个三态多路复用器,可以作为加法器的基础了,如下图所示:

三态多路复用器(3MUX1)

        这样就有三选1数据选择器了,看过平衡三进制加法器文章的,这个就是三态多路复用器;当输入T/0/1时,数据从第1/2/3路输出,因为2位bit代表1trit,所以它有10个引脚;有了这组件,平衡三进制的全加器也可以弄出来了,二进制的加法器方案放这里不管用,所以要上述的的平衡三进制加法器文章中的加法器。


4.4平衡三进制左偏门、右偏门

        这里的左偏与右偏门在全加器有用到,所以现在弄成一个基础件,它可以转换输入,从而简化输入,例如右偏:当输入T时,输出0;当输入0时,输出1;当输入1时,输出T;下面就是它的输入与输出真值表。

左右偏门真值表
平衡三进制左偏门
平衡三进制右偏门

        如上图所示,平衡三进制左右偏门都用到了前面的三选1基础件1,当然也可以用三选1基础件2,效果一样,这样确实是零件多了,但是确实也是简化了输入。


4.5平衡三进制最小门、最大门

        如上图所示,在平衡三进制全加器中,还用到了最大门与最小门,它的构建可以用类似于左偏门和右偏门的方法,这样也就形成了Max(A,0)与Min(A,0),如下图所示:

平衡三进制Max(A,0)门
平衡三进制Min(A,0)门

        说完了Max(A,0)与Min(A,0),其实平衡三进制与门和或或门,最可以当做逻辑最大门及逻辑最小门,它其实是从不同角度来解释的,思路与下面的截图来自于文章三生万物,请看下图:

        在这我们要明确一点,逻辑是逻辑,数值是数值,明白这一点很重要; 当从逻辑上去想,那么T表示假,0表示两都,1表示真,那么得到的就是平衡进制的与门及或或门; 当从数值上去想,那么T表示-1,0表示0,1表示1,那么得到的就是平衡进制的最小门及或或门,也就是与门成为了Min(A,B)及或门成为了Max(A,B),也就是说这两个门可以比较大小,输出最大或最小值,同样也可以用来构建Max(A,0)与Min(A,0),如下图所示:

平衡三进制Min(A,0)与Max(A,0)门

        这样最后得到的设计,就非常简便了,而且用这个Min(A,B)门及Max(A,B)门,也就是与门及或门,可以制作一个对比数字大小的电路,对比两个数的大小有:0与0、正数与负数、0与负数、0与正数、正数与正数、负数与负数,总共6种情况,从最高位左起第一位若非 0 值,就可判断它的正负性,是 T 即为负数,是 1 即为正数。

        这样就可以解决:0与0、正数与负数、0与负数、0与正数,这些情况的判断了,剩下的双正与双负的判断,可以先在前面补0让两个数对齐,然后从最高位开始,依次对比每一位大小,相同时跳过进行下一位,只要路径中有一位大于另一位则出结果,不然全部对比完都相同,则两都数都是相同的。


5、平衡三进制加法器

        在前面平衡三进制全加器,我们已经给出它的真值表及设计图,现在就可以实现它了,它需要左偏门(A-1)、右偏门(A+1)、最大门Min(A,0)、最小门Max(A,0)门、三态复用器3Mux1,按照下面的思路就可以弄出来了。

加法器设计图

5.1平衡三进制半加器

平衡三进制半加器的真值表

        如上图所示,半加器的真值表,它的电路分为加和位与进位位,其实它的输入用了左偏与右偏及Max(A,0)与Min(A,0),这样是简化了设计思路,但加了零件成本,后期可以单独增加两条线路,专门用于不同的输入,可以得到下面两张图:

半加器加法位
半加器进位位

5.2平衡三进制全加器

全加器27种结果的真值表

只要其中一张就可以表示所有的输出结果了,这样将它的加法位与进位位分开,就得了它的输入逻辑了,如下图所示:

全加器真值表简化版

这样就可以完成设计了,也就是下图所示:

        如上图所示,有6个输入,最上面的2个输入代表进位位,后面的4个输入代表,可以输入两个平衡三进制数;有4个输出,上面是加和位,下面是进位位,跟二进制的加法器很想,但只是每一位trit都要2bit来表示,经过测试这个电路完全符合预期的标准,对加位的电路做了优化,也就是将输出的结果进行了左偏与右偏,再用第三位做选择,就可以少用一些电路,但对于进位位,它不能这样做,因为它偏置操作也得不到想要的数据,所以用偏置后错误的数据,再用第三位选择也得不到正确的结果。


5.3平衡三进制多位加法器

        为什么是4位加法器,在二进制中1byte=8bit,在这里用2bit代表1trit,所以只能1byte=4trit,和前苏联的三进制计算机相比,还少了2trit,标准的是6个trit=1个三进制字节tryte;如果想达到标准的6个trit,那需要12bit才行,图灵完备只有8bit,所以只能弄4trit的平衡三进制加法器了;二进制的8位全加器串联可计算255以内的加法,也就是2个byte输入及1个进位输入,输出是1个byte输出及1个进位输出,所以设计也要类似就行,如下图所示:

        这就是类似于二进制的平衡三进制加法器了,它可以计算(-81到81)以内的加减法,是的,加减法,这个就是它的优点,加法器与减法器都是它,现在就可以试试它的计算功能了,如下图所示:

        看完了上面,是否感觉,算的太少了,那就再串联一次,这样就得到了8trit的平衡三进制加法器了,下面的8trit加法可以算(-6561~6561)内的加减法,如果还不够可以继续串联,如下图所示的方法:


累了,更不动了,后面有空再更吧。。。

这篇关于《全网首发》平衡三进制图灵机的构建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069068

相关文章

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

usaco 1.2 Palindromic Squares(进制转化)

考察进制转化 注意一些细节就可以了 直接上代码: /*ID: who jayLANG: C++TASK: palsquare*/#include<stdio.h>int x[20],xlen,y[20],ylen,B;void change(int n){int m;m=n;xlen=0;while(m){x[++xlen]=m%B;m/=B;}m=n*n;ylen=0;whi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数

JAVA用最简单的方法来构建一个高可用的服务端,提升系统可用性

一、什么是提升系统的高可用性 JAVA服务端,顾名思义就是23体验网为用户提供服务的。停工时间,就是不能向用户提供服务的时间。高可用,就是系统具有高度可用性,尽量减少停工时间。如何用最简单的方法来搭建一个高效率可用的服务端JAVA呢? 停工的原因一般有: 服务器故障。例如服务器宕机,服务器网络出现问题,机房或者机架出现问题等;访问量急剧上升,导致服务器压力过大导致访问量急剧上升的原因;时间和

利用Django框架快速构建Web应用:从零到上线

随着互联网的发展,Web应用的需求日益增长,而Django作为一个高级的Python Web框架,以其强大的功能和灵活的架构,成为了众多开发者的选择。本文将指导你如何从零开始使用Django框架构建一个简单的Web应用,并将其部署到线上,让世界看到你的作品。 Django简介 Django是由Adrian Holovaty和Simon Willison于2005年开发的一个开源框架,旨在简