c++编程(18)——deque的模拟实现(2)容器篇

2024-06-17 03:36

本文主要是介绍c++编程(18)——deque的模拟实现(2)容器篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎来到博主的专栏——c++编程
博主ID:代码小豪

文章目录

    • deque的数据结构
    • deque的构造
      • 默认构造
      • 填充构造
    • deque的其他操作
    • deque的插入、删除
      • push_back和push_front
      • pop_back和pop_front
      • clear、erase和insert操作
    • 传送门

在上一篇中,我们已经实现了deque最核心的部分,即deque的迭代器,在deque容器当中,迭代器充当了非常重要的角色,在deque的大多数操作当中,都是对迭代器进行操作

deque的数据结构

回到deque容器,我们知道deque的成员有以下几个

  1. 迭代器first,指向首元素
  2. 迭代器last,指向末尾元素的后一个
  3. 中控数组map,管理缓冲区
  4. 中控数组个数mapsize,管理缓冲区个数’

deque的构造

我们先来看看如何构造一个空的deque容器,即deque的默认构造。

一个未初始化的deque是这样的
在这里插入图片描述
如何初始化出一个空的deque容器呢?首先我们要为map分配出多个未使用的缓冲区,然后初始化出map的中间部分的缓冲区,并将first和last迭代器指向缓冲区的中间位置。

为什么一定要用map的中间部分呢?在前面我们已经讲过了,deque是一个双端队列,那么deque必须要做到头尾插入,如果我们不选择中间部分作为初始空间,那么deque会出现某一端的效率变低。

在这里插入图片描述
所以正确的方式应该是在中间部分进行初始化
在这里插入图片描述
我们先为map配置好缓冲区,并且安排好deque的结构,将这部分的操作写成一个函数,命名为CreateMapAndNode。意思是创建中控数组,并且生成缓冲区(注意这个函数会经常出现在deque的构造当中)。

void CreateMapAndNode(size_t elementNum)
{size_t nodeNum = elementNum / bufsize + 1;//判断待使用的缓冲区有几个mapsize = nodeNum < 8 ? 8 : nodeNum + 2;//预留缓冲区,提高效率map = new pointer[mapsize];//开辟mapsize个缓冲区//计算出[nstart,nfinish]的区间map_poniter nstart = map + (mapsize - (elementNum / bufsize)) / 2;map_poniter nfinsh = nstart + nodeNum - 1;//初始化这个区间map_poniter tmp = nstart;while (tmp <= nfinsh){*tmp = new T[bufsize];//生成缓冲区tmp++;}//初始化迭代器strat和finish,使得这两个迭代器指向deque的起始地址和结尾地址start.setnode(nstart);finish.setnode(nfinsh);start.cur = start.first;finish.cur = finish.first + (elementNum % bufsize);
}

先来解释一下这个函数中出现的几个重要参数吧。

(1)elementNum,为deque容器初始化的元素个数。(2)nodeNum,初始化这些元素个数需要多少个缓冲区(3)nstart,nfinish,这是一个区间的两个边界,[nstart,nfinsh]是这些元素所在的缓冲区区间。

要注意CreateNodeAndMap是一个只在为deque容器初始化的时候才能用,即只会出现在deque的构造函数当中。因此这个函数的行为其实就是一个初始化的行为,因此不会有插入元素的操作。只是开辟map和缓冲区的空间。

这个函数的逻辑是有点复杂的,博主在这里进行按照顺序梳理一下。

  1. 先确定deque会初始化多少个元素
  2. 确定这些元素会占据多少个缓冲区,缓冲区个数=elementNum/bufsize+1
  3. 为map开辟空间,为了避免频繁扩容导致的时间开销,我们要为map预留出一部分区间,因此可以看到,mapsize如果小于8,就预留8个缓冲区,如果mapsize的个数大于8,就多预留2个缓冲区
  4. [nstart,nfish]会处在中控数组的中间的区段,因为保持在中间,可以让头尾两端的扩充空间一样,保持头尾插入、删除的效率不变。
  5. 将[nstart,nfinsh]的空间开辟出来,便于后续插入数据。

默认构造

由于默认构造不需要插入任何数据,因此在调用CreateMapAndNode的时候不需要插入任何的数据,因此传入数据0即可

deque()
{CreateMapAndNode(0);
}

填充构造

填充构造就是在初始化deque容器时,向deque容器插入N个值为val的元素。

deque(size_t n, T val)
{CreateMapAndNode(n);//生成n个元素的空间map_poniter cur;for (cur = start.node; cur < finish.node; cur++){fill(*cur, *cur + bufsize, val);}fill(finish.first, finish.last, val);
}
template<class inputiterator,class T>
void fill(inputiterator first, inputiterator last, T val)
{while (first != last){*first = val;first++;}
}

这个fill的作用是将[first,last)区间内的所有元素都填充为val,放在填充构造当中,就是为缓冲区内的元素都填充为val。

deque的其他操作

iterator begin() { return start; }
iterator end() { return finish; }
T& front(){return *start;}T& back(){iterator tmp = finish;tmp--;return *tmp;
}
T& operator[](size_t pos){assert(pos < size())return *(start+pos);
}size_t size(){return finish - start;}
bool empty() { return finish == start; }

当我们为deque设计好begin(),end()之后,我们可以用范围for(range for)来遍历整个deque。

void testmydeque()
{deque<int> dq1(5, 10);for (auto& e : dq1){cout << e << " ";//10 10 10 10 10 }cout << dq1.front() << endl; //10cout << dq1.back() << endl;//10cout << dq1[5] << endl;//error pos>=size()
}

后续不再提供测试案例,如果感兴趣可以去博主的代码仓库查看,链接将会放在文章末尾。

deque的插入、删除

push_back和push_front

我们先来完成deque的pushback()和popback(),由于在插入的过程中可能会出现缓冲区空间不足的情况,此时我们就需要开辟新的缓冲区,来容纳这些数据。

void push_back(const T& val)
{if (finish.cur != finish.last-1)//判断是否来到了缓冲区边界{*finish = val;++finish;}else {//到达边界,需要开辟新的缓冲区ReserveMapAtBack();//判断一下是否需要在map的后端新增缓冲区*(finish.node + 1) = new T[bufsize];*finish = val;finish.setnode(finish.node + 1);finish.cur = finish.first;}
}

这里的pushback会对下面的三种情况进行不同的操作
情况1:当尾端的缓冲区还有剩余空间时
在这里插入图片描述
情况2,当缓冲区没有空间,但是map中还有多于的缓冲区
由于并不是map数组管理的所有缓冲区都开辟了空间,因为这可能会导致空间浪费的现象,所以deque采取的策略是,先为map获取多个缓冲区,为已使用的缓冲区开辟空间,盈余的缓冲区不开辟空间,秉承一个用一个缓冲区开一个缓冲区的原则。
在这里插入图片描述
有没有发现deque在尾插时,插入的位置在末尾迭代器finish的上一个,这是由于c++规定STL中的末尾迭代器必须保持[begin,end)的区间,即容器的的末尾迭代器指向的是有效数据的后一位。

情况三:当缓冲区的剩余空间不足,并且map没有多于的后端缓冲区时。
此时需要将重新生成一个map,这个map可以管理更多的缓冲区,接着再将原map的元素转移到新map上。
在这里插入图片描述
这个操作我们交给了ReserveMapAtBack()函数。它会判断我们是否需要再尾端添加新的缓冲区。

void ReserveMapAtBack(size_t AddNode = 1)
{if (AddNode > mapsize - (finish.node - map-1))reallocmap(AddNode, false);
}

AddNode是要增加的缓冲区个数。如果满足要增加的缓冲区个数。大于末端缓冲区的盈余个数,就要重新配置一个map。配置新map的操作我们使用reallocmap来实现。

由于不仅仅pushback会重新配置map,pushpop也会重新配置map,因此我们将realoocmap设计成可以在尾端重新配置,也能在头端重新配置。reallocmap函数如下:

void reallocmap(size_t AddNode,bool AllocAtFront)
{size_t oldnodes = finish.node - start.node + 1;//旧的有效缓冲区个数size_t newnodes = oldnodes + AddNode;//新的有效缓冲区个数map_poniter newstart;size_t newmapsize = mapsize+(mapsize > AddNode ? mapsize : AddNode) + 2;//新map的管理缓冲区个数map_poniter newmap = new pointer[newmapsize];//生成新的map数组//计算新的迭代器区间newstart = newmap + (newmapsize - newnodes) / 2+ (AllocAtFront ? AddNode:0);map_poniter newfinish = newstart + oldnodes - 1;copynode(start.node, finish.node + 1, newstart);//将旧缓冲区交给新的map管理delete[] map;//释放旧map//更改迭代器以及容器数据map = newmap;mapsize = newmapsize;start.setnode(newstart);finish.setnode(newfinish);
}

具体步骤如下

  1. 先计算旧缓冲区的个数
  2. 再计算新缓冲区的个数,新缓冲区个数=旧缓冲区个数+新增缓冲区个数
  3. 计算新的map的缓冲区
  4. 为新map开辟空间
  5. 计算新缓冲区的区间[newstart,newfinish]
  6. 将旧map的有效缓冲区交给新map管理
  7. 删除旧map
  8. 调整迭代器,以及deque的容器数据

copynode函数可以将数据拷贝到指定数据上。

template<class inputiterator, class outputiterator>
void copynode(inputiterator first, inputiterator last, outputiterator dest)
{while (first != last){*dest = *first;dest++;first++;}
}

pushfront()也可以复用这些函数,因此我们写起来会轻松很多。

void push_front(const T&val)
{if (start.cur != start.first){start--;*start = val;}else {ReserveMapAtFront();*(start.node - 1) = new T[bufsize];start--;*start = val;}
}

push_front也有三种情况,但是和push_back面临的问题类似,因此博主不多赘述了。

pop_back和pop_front

void pop_back()
{assert(!empty());//空容器不能调用pop_backif (finish.cur != finish.first){finish--;}else {delete[] finish.first;//释放缓冲区finish.setnode(finish.node - 1);finish.cur = finish.last - 1;}
}

pop_back会出现两种情况。

  1. 如果尾删后缓冲区仍有元素(即first.cur!=first.first),就让迭代器指向上一个元素
  2. 如果尾删后缓冲区没有元素,为了继续贯彻用一个缓冲区开一个缓冲区的原则,就需要对没有元素的缓冲区进行释放。

在这里插入图片描述

在这里插入图片描述
pop_front的操作和pop_back比较类似,也是要判断缓冲区有没有剩余元素

void pop_front()
{assert(!empty());if (start.cur != start.last - 1){start++;}else{delete start.first;start.setnode(start.node + 1);start.cur = start.first;}
}

clear、erase和insert操作

void clear()
{for (map_poniter node = start.node; node <= finish.node; ++node)delete[] * node;//清除所有缓冲区//调整迭代器start和finishmap_poniter node = map + mapsize / 2;*node = new T[bufsize];start.setnode(node);start.cur = start.first;finish = start;
}

clear操作是清理deque容器的所有元素。具体操作如下:

  1. 释放当前的所有缓冲区
  2. 在map数组的中间部分开辟一个新的缓冲区,这个缓冲区为空
  3. 调整finish和start的迭代区间。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

erase操作是删除pos迭代器指向位置的元素,代码如下:

iterator erase(iterator pos)
{iterator next = pos+1 ;int index = pos - start;//偏移量if (index < size() / 2){copyAtFront(start,pos,next);//从前往后拷贝pop_front();//删除前面的冗余元素}else {copy(next, finish, pos);//从后向前拷贝pop_back();}return start + index;
}

erase的步骤如下:

  1. 先计算偏移量,来判断这个删除的元素位于前半段还是后半段
  2. 如果元素处于后半段,就从后往前挪动数据,调用copy函数
  3. 如果元素 处于前半段,就从前往后挪动数据,调用coptAtFront函数
  4. 之所以要分前后半段,主要还是因为挪动的数据越少,效率越高。

在这里插入图片描述
往前挪动的函数是copyAtFront,代码如下:

template<class inputiterator, class outputiterator>
void copyAtFront(inputiterator first,inputiterator last,outputiterator dest)//从后往前拷贝
{while (last != first){--last;--dest;*dest = *last;}
}

在这里插入图片描述
从后往前挪动的代码是copy,实际上这个copy和copynode的代码完全一样,可以用来复用,之所以写成两个不一样的名字,是因为博主希望在文中为其做一个区分,而博主的源代码中。copynode和copy都写成了同一个模板函数,写为copy。

template<class inputiterator, class outputiterator>
void copy(inputiterator first, inputiterator last, outputiterator dest)
{while (first != last){*dest = *first;dest++;first++;}
}

在pos位置上插入一个值为val的元素

iterator insert(iterator pos, const T& val)
{if (pos.cur == start.cur) {//如果插入在开头,交给push_frontpush_front(val);return start;}else if (pos.cur == finish.cur) {//如果插入在末尾,交个push_backpush_back(val);return finish - 1;}else {//插入在中间位置int index = pos - start;//计算偏移量if (index < size() / 2) {push_front(front());//最前端加上与第一个元素同值的元素pos = start + index;//标记一下,待会方便挪动数据iterator pos1 = pos;++pos1;copy(start+2, pos1, start+1);}else{push_back(back());//在尾端加上一个与最后一个元素同值的元素pos = start + index;copyAtFront(pos, finish-2, finish-1);}*pos = val;return pos;}
}

关于头插和尾插的方式博主就不赘述了,关键的点在于如何在中间插入,其实这与erase存在异曲同工之妙。

不要被各种变量吓到了,其实本质上就是为了挪动数据,让数据插入到pos位置中。
在这里插入图片描述
在这里插入图片描述

传送门

deque的模拟实现——迭代器篇:deque的模拟实现(1)迭代器篇
deque的模拟实现源码:deque的模拟实现源码

这篇关于c++编程(18)——deque的模拟实现(2)容器篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068374

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操