memory动态内存管理学习之shared_ptr

2024-06-17 01:20

本文主要是介绍memory动态内存管理学习之shared_ptr,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

此头文件是动态内存管理库的一部分。std::shared_ptr 是一种通过指针保持对象共享所有权的智能指针。多个 shared_ptr 对象可持有同一对象。下列情况之一出现时销毁对象并解分配其内存:

  • 最后剩下的持有对象的 shared_ptr 被销毁;
  • 最后剩下的持有对象的 shared_ptr 被通过 operator= 或 reset() 赋值为另一指针。

成员函数

(构造函数)

构造新的 shared_ptr
(公开成员函数)

(析构函数)

如果没有更多 shared_ptr 指向所持有的对象,则析构该对象
(公开成员函数)

operator=

shared_ptr 赋值
(公开成员函数)
修改器

reset

替换所管理的对象
(公开成员函数)

swap

交换所管理的对象
(公开成员函数)
观察器

get

返回存储的指针
(公开成员函数)

operator*operator->

解引用存储的指针
(公开成员函数)

operator[]

(C++17)

提供到所存储数组的索引访问
(公开成员函数)

use_count

返回 shared_ptr 所指对象的引用计数
(公开成员函数)

unique

(C++20 前)

检查所管理对象是否仅由当前 shared_ptr 的对象管理
(公开成员函数)

operator bool

检查是否有关联的管理对象
(公开成员函数)

owner_before

提供基于持有者的共享指针排序
(公开成员函数)

示例代码

#include <iostream>
#include <memory>struct C2 { int* data; };
struct C3 { int a; int b; };int main()
{// shared_ptr constructor examplestd::shared_ptr<int> p1;std::shared_ptr<int> p2(nullptr);std::shared_ptr<int> p3(new int);std::shared_ptr<int> p4(new int, std::default_delete<int>());std::shared_ptr<int> p5(new int, [](int* p) {delete p; }, std::allocator<int>());std::shared_ptr<int> p6(p5);std::shared_ptr<int> p7(std::move(p6));std::shared_ptr<int> p8(std::unique_ptr<int>(new int));std::shared_ptr<C2> obj(new C2);std::shared_ptr<int> p9(obj, obj->data);std::cout << "use_count:\n";std::cout << "p1: " << p1.use_count() << '\t';std::cout << "p2: " << p2.use_count() << '\t';std::cout << "p3: " << p3.use_count() << '\t';std::cout << "p4: " << p4.use_count() << '\t';std::cout << "p5: " << p5.use_count() << '\n';std::cout << "p6: " << p6.use_count() << '\t';std::cout << "p7: " << p7.use_count() << '\t';std::cout << "p8: " << p8.use_count() << '\t';std::cout << "p9: " << p9.use_count() << '\n';// shared_ptr destructor exampleauto deleter = [](int *p) {std::cout << "[delete called]\n"; delete p;};std::shared_ptr<int> foo(new int, deleter);std::cout << "use_count:" << foo.use_count() << '\n';// shared_ptr::operator= examplestd::shared_ptr<int> foo2;std::shared_ptr<int> bar2(new int(10));foo2 = bar2;						//copybar2 = std::make_shared<int>(20);	//movestd::unique_ptr<int> unique(new int(30));foo2 = std::move(unique); //move from unique_ptrstd::cout << "*foo2:" << *foo2 << '\t';std::cout << "*bar2:" << *bar2 << '\n';// shared_ptr::reset examplestd::shared_ptr<int> sp;	//emptysp.reset(new int);			//takes ownership of pointer*sp = 100;std::cout << *sp << '\n';sp.reset(new int);			//deletes managed object, acquires new pointer*sp = 200;std::cout << *sp << '\n';// shared_ptr::swap examplestd::shared_ptr<int> foo3(new int(101));std::shared_ptr<int> bar3(new int(201));foo3.swap(bar3);std::cout << "*foo3:" << *foo3 << '\t';std::cout << "*bar3:" << *bar3 << '\n';// shared_ptr::get exampleint *p = new int(10);std::shared_ptr<int> a(p);if(a.get() == p)std::cout << "a and p point to the same location\n";// three ways of accessing the same address:std::cout << *a.get() << "\t";std::cout << *a << "\t";std::cout << *p << "\n";// shared_ptr::operator*std::shared_ptr<int> foo4(new int);std::shared_ptr<int> bar4(new int(100));*foo4 = *bar4 * 2;std::cout << "foo4: " << *foo4 << '\t';std::cout << "bar4: " << *bar4 << '\n';// shared_ptr::operator->std::shared_ptr<C3> foo5;std::shared_ptr<C3> bar5(new C3);foo5 = bar5;foo5->a = 10;bar5->b = 20;if (foo5) std::cout << "foo5: " << foo5->a << ' ' << foo5->b << '\t';if (bar5) std::cout << "bar5: " << bar5->a << ' ' << bar5->b << '\n';// shared_ptr::uniquestd::shared_ptr<int> foo6;std::shared_ptr<int> bar6(new int);std::cout << "foo6 unique?\n" << std::boolalpha;std::cout << "1: " << foo6.unique() << '\t';  // false (empty)foo6 = bar6;std::cout << "2: " << foo6.unique() << '\t';  // false (shared with bar)bar6 = nullptr;std::cout << "3: " << foo6.unique() << '\n';  // true// example of shared_ptr::operator boolstd::shared_ptr<int> foo7;std::shared_ptr<int> bar7(new int(34));if (foo7) std::cout << "foo7 points to " << *foo7 << '\n';else std::cout << "foo7 is null\n";if (bar7) std::cout << "bar7 points to " << *bar7 << '\n';else std::cout << "bar7 is null\n";// shared_ptr::owner_beforeint *p10 = new int(10);std::shared_ptr<int> a10(new int(20));std::shared_ptr<int> b10(a10, p10);  // alias constructorstd::cout << "comparing a11 and b10...\n" << std::boolalpha;std::cout << "value-based: " << (!(a10 < b10) && !(b10 < a10)) << '\n';std::cout << "owner-based: " << (!a10.owner_before(b10) && !b10.owner_before(a10)) << '\n';delete p10;return 0;
}

运行效果:

参考:

https://cplusplus.com/reference/memory/shared_ptr/

std::shared_ptr - cppreference.com

这篇关于memory动态内存管理学习之shared_ptr的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068091

相关文章

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

IDEA中的Kafka管理神器详解

《IDEA中的Kafka管理神器详解》这款基于IDEA插件实现的Kafka管理工具,能够在本地IDE环境中直接运行,简化了设置流程,为开发者提供了更加紧密集成、高效且直观的Kafka操作体验... 目录免安装:IDEA中的Kafka管理神器!简介安装必要的插件创建 Kafka 连接第一步:创建连接第二步:选

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss