DenseNet完成Cifer10任务的效果验证

2024-06-17 00:44

本文主要是介绍DenseNet完成Cifer10任务的效果验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文章是针对论文《2017-CVPR-DenseNet-Densely-Connected Convolutional Networks》中实验的复现,使用了几乎相同的超参数

目录

一、论文中的实验

1.准确率

2.参数效率

3.不同网络结构之间的比较

二、超参数:

三、复现的实验结果:

1.DenseNet201 epoch=40:

2.DenseNet121 epoch=40:

3.ResNet18 epoch=40:

三、结论

1.准确率

2.参数效率


一、论文中的实验

        在源论文中,作者使用CIFAR10,CIFAR100和SVHN三个数据集上使用了一些包括DenseNet-BC(以下统称DenseNet)和ReNet的网络进行测试,最终的错误率如下:

1.准确率

        在没有数据增强的情况下,DenseNet的准确率显著超过了其他网络,在有数据增强的情况下,也有微弱优势

2.参数效率

        在参数数量相等的情况下,DenseNet优更低的错误率,在达到相同错误率时,DenseNEt只用了1/3的参数

3.运算复杂度

要达到同样的错误率,DenseNet进行的浮点运算次数更少

4.不同网络结构之间的比较

网络层数越多,错误率越低

二、超参数:

#使用镜像加裁剪的数据增强,以及使用通道均值和标准差对数据进行归一化
transform_train = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomCrop(32, padding=4),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])#使用通道均值和标准差对数据进行归一化
transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
#载入训练集50000张图片,batchsize=64
trainset = tv.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform_train)
trainloader = t.utils.data.DataLoader(trainset, batch_size=64,shuffle=True, num_workers=0)
#载入测试集10000张图片
testset = tv.datasets.CIFAR10(root='./data', train=False,                                 download=True, transform=transform_test)
testloader = t.utils.data.DataLoader(testset, batch_size=64,shuffle=False, num_workers=0)
#使用GPU训练
MyDevice = t.device("cuda:0" if t.cuda.is_available() else "cpu")
# 权重初始化(本论文中直接引用的另一篇论文的权重初始化,这里也是直接拿过来用)
def weights_init(m):classname = m.__class__.__name__if classname.find('Conv') != -1:nn.init.kaiming_normal_(m.weight)elif classname.find('BatchNorm') != -1:nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)net.apply(weights_init)
net=net.to(MyDevice)
#交叉熵损失函数
criterion = nn.CrossEntropyLoss()
#使用SGD优化,初始学习率为0.1,使用权重衰减为0.0001和0.9的Nesterov动量
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
#在训练周期为总周期的50%和75%时,学习率降低10倍
scheduler = MultiStepLR(optimizer, milestones=[20,30], gamma=0.1)

三、复现的实验结果:

论文中给出了DenseNet的四中结构,我们首先分别使用121和201使用同样的超参数进行了测试:

1.DenseNet201 epoch=40:

#直接使用pytorch提供的网络
net = models.densenet121(pretrained=False,num_classes=10).to(MyDevice)

2.DenseNet121 epoch=40:

#直接使用pytorch提供的网络
net = models.densenet121(pretrained=False,num_classes=10).to(MyDevice)

可以很明显的看出201相比121的优势很明显

对于ResNet,我们同样使用了最简单ResNet18和较复杂的ResNet101:

3.ResNet18 epoch=40:

net = models.resnet18(pretrained=False,num_classes=10).to(MyDevice)

4.ResNet101 epoch=40:

net = models.resnet101(pretrained=False,num_classes=10).to(MyDevice)

准确率极低,可能是过拟合导致的

三、结论

1.准确率

        复现的实验准确率与论文中的实验准确率存在差距,原因可能是仍有部分超参数不同,论文中有一些超参数时直接引用的其他论文,没有给出具体参数,比如“We adopt a standard data aug-mentation scheme (mirroring/shifting) that is widely used for these two datasets[1113172228203234]”,我们没有时间和能力去读额外的论文,所以采用了便于实现的镜像+裁剪来进行数据增强。在权重初始化和定义优化函数时也遇到了类似的问题,所以实验并不是100%复现

        在复现的实现中,ResNet18和DenseNet201的准确率几乎一样,与论文中使用数据增强时的结果类似

2.参数效率

DenseNet的参数效率确实比DenseNet,可以从运行时的程序内存占用大概看出来(PythonApplication9在运行ResNet18,PythonApplication8在运行DenseNet201)

3.过拟合

从上面ResNet101的结果可以看出,在使用相同超参数的情况下,ResNet很早就出现了损失下降二准确率没有提高的过拟合迹象,即使学习率改变也没有改善,而DenseNet没有出现这种情况

4.运算复杂度

在进行epoch=300的复现实验时,两个网络是同时开始在同一设备上运行的,在任意相同时刻时,DenseNet达到的准确率都要更高,可以印证论文中的说法,但是在同epoch的情况下,DenseNet还是要慢的多的

如图:左边是DenseNet201,右边是ResNet8

这篇关于DenseNet完成Cifer10任务的效果验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068016

相关文章

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringQuartz定时任务核心组件JobDetail与Trigger配置

《SpringQuartz定时任务核心组件JobDetail与Trigger配置》Spring框架与Quartz调度器的集成提供了强大而灵活的定时任务解决方案,本文主要介绍了SpringQuartz定... 目录引言一、Spring Quartz基础架构1.1 核心组件概述1.2 Spring集成优势二、J

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i