赶紧收藏!2024 年最常见 20道并发编程面试题(九)

2024-06-16 23:52

本文主要是介绍赶紧收藏!2024 年最常见 20道并发编程面试题(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇地址:赶紧收藏!2024 年最常见 20道并发编程面试题(八)-CSDN博客

十七、什么是乐观锁和悲观锁?

乐观锁和悲观锁是两种不同的并发控制策略,用于管理多线程环境下对共享资源的访问,以确保数据的一致性和完整性。它们的基本区别在于对冲突发生可能性的预期和处理方式。

悲观锁(Pessimistic Locking)

悲观锁的核心思想是,认为在多线程环境中,多个线程访问同一资源时发生冲突的可能性很大,因此需要采取预防措施来避免冲突。悲观锁的主要特点包括:

  1. 锁定资源:在访问资源之前,悲观锁会尝试获取一个锁。如果锁已经被其他线程持有,当前线程将被阻塞,直到锁被释放。
  2. 适用场景:当资源的争用非常频繁,或者数据的一致性要求非常高时,悲观锁是一种合适的选择。
  3. 性能影响:悲观锁可能会导致线程阻塞和上下文切换,从而影响系统性能,特别是在高并发的环境下。
  4. 死锁风险:如果多个线程相互等待对方释放锁,可能会导致死锁。
  5. 实现方式:悲观锁可以通过数据库的排它锁(如 SELECT FOR UPDATE 语句)或编程语言的同步机制(如 Java 中的 synchronized 关键字)来实现。

乐观锁(Optimistic Locking)

乐观锁的核心思想是,认为在多线程环境中,多个线程访问同一资源时发生冲突的可能性很小,因此允许多个线程同时访问资源,但在提交更新时会检查是否有其他线程已经修改了资源。乐观锁的主要特点包括:

  1. 无锁状态:乐观锁不使用传统的锁机制,而是通过数据版本控制或其他机制来确保数据一致性。
  2. 适用场景:当资源的争用不频繁,或者系统更倾向于提高吞吐量时,乐观锁是一种合适的选择。
  3. 性能优势:乐观锁通常可以提供更好的性能,因为它允许多个线程并发访问资源,减少了线程阻塞和等待的时间。
  4. 冲突检测与处理:在更新资源时,乐观锁会检查资源是否被其他线程修改过。如果检测到冲突,可以通过重试、回滚或其他业务逻辑来处理。
  5. 实现方式:乐观锁可以通过版本号(每次更新数据时增加版本号,并在更新时检查版本号是否一致)或时间戳(记录数据最后更新的时间,更新时检查时间戳是否一致)等机制来实现。

总结

悲观锁和乐观锁的选择取决于具体的应用场景和需求。悲观锁适用于高冲突风险的环境,通过锁定资源来保证数据一致性,但可能会牺牲性能。乐观锁适用于低冲突风险的环境,通过减少锁的使用来提高并发性能,但需要合理处理冲突和重试逻辑。在实际应用中,根据业务特点和性能要求,可能需要灵活选择或结合使用这两种策略。

十八、请解释什么是死循环(Livelock)和饥饿(Starvation)

死循环(Livelock)和饥饿(Starvation)是两种在多线程编程中可能遇到的问题,它们都与资源的访问和线程的调度有关。

死循环(Livelock)

死循环不是传统意义上的程序无限循环执行,而是指两个或多个线程在运行过程中,由于尝试获取资源时相互让步,导致没有一个线程能够继续执行的状态。这种情况下,线程本身并没有被阻塞,也没有死锁,但它们不断地在让步和重新尝试,导致无法取得进展。

特点

  1. 活跃状态:与死锁不同,死循环中的线程是活跃的,它们不断地尝试获取资源。
  2. 相互让步:线程之间相互感知到对方的存在,并试图通过让步来避免冲突。
  3. 无进展:尽管线程活跃,但它们无法取得实质性进展,因为它们总是在重新尝试和让步。
  4. 资源未被使用:由于线程无法取得进展,资源实际上没有被使用。

例子:两个线程都需要A和B两个资源才能继续执行。线程1持有资源A并等待资源B,线程2持有资源B并等待资源A。如果两个线程都检测到对方正在等待,它们可能会释放自己的资源并重新尝试获取,但总是无法同时获得所需的资源。

饥饿(Starvation)

饥饿是指在多线程环境中,由于线程调度策略或资源分配机制的问题,导致一个或多个线程长时间无法获得所需资源,从而无法执行的状态。

特点

  1. 资源分配不均:某些线程可能因为优先级较低或资源分配策略的原因,长时间得不到资源。
  2. 长时间等待:受影响的线程可能长时间处于等待状态,无法执行。
  3. 不公平性:饥饿反映了线程调度或资源分配的不公平性。
  4. 系统性能下降:长期饥饿的线程可能导致系统性能下降,因为它们无法为系统贡献工作。

例子:如果一个线程调度器总是优先执行高优先级的线程,低优先级的线程可能会长时间得不到CPU时间片,导致饥饿。或者在资源有限的情况下,如果一个线程持续占用资源不放,其他线程可能因为无法获得资源而饥饿。

总结

  • 死循环是一种状态,线程活跃但无法取得进展,通常由于线程间的相互让步导致。
  • 饥饿是一种状态,线程长时间无法获得所需资源,通常由于资源分配或线程调度策略的不公平性导致。

在设计多线程程序时,应该考虑避免死循环和饥饿,通过合理的资源管理和线程调度策略来确保所有线程都能公平地访问资源并取得进展。

这篇关于赶紧收藏!2024 年最常见 20道并发编程面试题(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067910

相关文章

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]