mapreduce实现浏览该商品的人大多数还浏览了经典应用

2024-06-16 20:18

本文主要是介绍mapreduce实现浏览该商品的人大多数还浏览了经典应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

输入:

日期    ...cookie id.        ...商品id..

xx            xx                        xx

输出:

商品id         商品id列表(按优先级排序,用逗号分隔)

xx                   xx

比如:

id1              id3,id0,id4,id2

id2             id0,id5

整个计算过程分为4步

1、提取原始日志日期,cookie id,商品id信息,按天计算,最后输出数据格式

商品id-0 商品id-1

xx           x x         

这一步做了次优化,商品id-0一定比商品id-1小,为了减少存储,在最后汇总数据转置下即可

reduce做局部排序及排重

 

2、基于上次的结果做汇总,按天计算

商品id-0 商品id-1  关联值(关联值即同时访问这两个商品的用户数)

xx             x x                xx

 

3、汇总最近三个月数据,同时考虑时间衰减,时间越久关联值的贡献越低,最后输出两两商品的关联值(包括转置后)

 

4、行列转换,生成最后要的推荐结果数据,按关联值排序生成

 

第一个MR

import java.io.IOException;
import java.util.ArrayList;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.Logger;
/*
* 输入:原始数据,会有重复
*日期 cookie 楼盘id
* 
* 输出:
* 日期 楼盘id1 楼盘id2  //楼盘id1一定小于楼盘id2 ,按日期 cookie进行分组
* 
*/
public class HouseMergeAndSplit {
public static class Partitioner1 extends Partitioner<TextPair, Text> {
@Override
public int getPartition(TextPair key, Text value, int numParititon) {
return Math.abs((new Text(key.getFirst().toString()+key.getSecond().toString())).hashCode() * 127) % numParititon;
}
}
public static class Comp1 extends WritableComparator {
public Comp1() {
super(TextPair.class, true);
}
@SuppressWarnings("unchecked")
public int compare(WritableComparable a, WritableComparable b) {
TextPair t1 = (TextPair) a;
TextPair t2 = (TextPair) b;
int comp= t1.getFirst().compareTo(t2.getFirst());
if (comp!=0)
return comp;
return t1.getSecond().compareTo(t2.getSecond());
}
}
public static class TokenizerMapper 
extends Mapper<LongWritable, Text, TextPair, Text>{
Text val=new Text("test");
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String s[]=value.toString().split("\001");	    	
TextPair tp=new TextPair(s[0],s[1],s[4]+s[3]); //thedate cookie city+houseid
context.write(tp, val);
}
}
public static class IntSumReducer 
extends Reducer<TextPair,Text,Text,Text> {
private static String comparedColumn[] = new String[3];
ArrayList<String> houselist= new ArrayList<String>();
private static Text keyv = new Text();
private static Text valuev = new Text();
static Logger logger = Logger.getLogger(HouseMergeAndSplit.class.getName());
public void reduce(TextPair key, Iterable<Text> values, 
Context context
) throws IOException, InterruptedException {
houselist.clear();
String thedate=key.getFirst().toString();
String cookie=key.getSecond().toString();  
for (int i=0;i<3;i++)
comparedColumn[i]="";
//first+second为分组键,每次不同重新调用reduce函数
for (Text val:values)
{
if (thedate.equals(comparedColumn[0]) && cookie.equals(comparedColumn[1])&&  !key.getThree().toString().equals(comparedColumn[2]))
{
// context.write(new Text(key.getFirst()+" "+key.getSecond().toString()), new Text(key.getThree().toString()+" first"+ " "+comparedColumn[0]+" "+comparedColumn[1]+" "+comparedColumn[2]));
houselist.add(key.getThree().toString());
comparedColumn[0]=key.getFirst().toString();
comparedColumn[1]=key.getSecond().toString();
comparedColumn[2]=key.getThree().toString();
}
if (!thedate.equals(comparedColumn[0])||!cookie.equals(comparedColumn[1]))
{
//  context.write(new Text(key.getFirst()+" "+key.getSecond().toString()), new Text(key.getThree().toString()+" second"+ " "+comparedColumn[0]+" "+comparedColumn[1]+" "+comparedColumn[2]));
houselist.add(key.getThree().toString());
comparedColumn[0]=key.getFirst().toString();
comparedColumn[1]=key.getSecond().toString();
comparedColumn[2]=key.getThree().toString();
}
}
keyv.set(comparedColumn[0]); //日期
//valuev.set(houselist.toString());
//logger.info(houselist.toString());
//context.write(keyv,valuev);
for (int i=0;i<houselist.size()-1;i++)
{
for (int j=i+1;j<houselist.size();j++)
{    valuev.set(houselist.get(i)+"	"+houselist.get(j)); //关联的楼盘
context.write(keyv,valuev);
}
} 
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseMergeAndSplit");
job.setNumReduceTasks(4);
job.setJarByClass(HouseMergeAndSplit.class);
job.setMapperClass(TokenizerMapper.class);
job.setMapOutputKeyClass(TextPair.class);
job.setMapOutputValueClass(Text.class);
// 设置partition
job.setPartitionerClass(Partitioner1.class);
// 在分区之后按照指定的条件分组
job.setGroupingComparatorClass(Comp1.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

TextPair

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
public class TextPair implements WritableComparable<TextPair> {
private Text first;
private Text second;
private Text three;
public TextPair() {
set(new Text(), new Text(),new Text());
}
public TextPair(String first, String second,String three) {
set(new Text(first), new Text(second),new Text(three));
}
public TextPair(Text first, Text second,Text Three) {
set(first, second,three);
}
public void set(Text first, Text second,Text three) {
this.first = first;
this.second = second;
this.three=three;
}
public Text getFirst() {
return first;
}
public Text getSecond() {
return second;
}
public Text getThree() {
return three;
}
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
three.write(out);
}
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
three.readFields(in);
}
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
cmp= second.compareTo(tp.second);
if (cmp != 0) {
return cmp;
}
return three.compareTo(tp.three);
}
}


TextPairSecond

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
public class TextPairSecond implements WritableComparable<TextPairSecond> {
private Text first;
private FloatWritable second;
public TextPairSecond() {
set(new Text(), new FloatWritable());
}
public TextPairSecond(String first, float second) {
set(new Text(first), new FloatWritable(second));
}
public TextPairSecond(Text first, FloatWritable second) {
set(first, second);
}
public void set(Text first, FloatWritable second) {
this.first = first;
this.second = second;
}
public Text getFirst() {
return first;
}
public FloatWritable getSecond() {
return second;
}
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
}
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
}
public int compareTo(TextPairSecond tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
return second.compareTo(tp.second);
}
}

 

第二个MR

import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.Logger;
/*
*  统计楼盘之间共同出现的次数
* 输入:
* 日期 楼盘1 楼盘2
* 
* 输出:
* 日期 楼盘1 楼盘2 共同出现的次数
* 
*/
public class HouseCount {
public static class TokenizerMapper 
extends Mapper<LongWritable, Text, Text, IntWritable>{
IntWritable iw=new IntWritable(1);
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
context.write(value, iw);
}
}
public static class IntSumReducer 
extends Reducer<Text,IntWritable,Text,IntWritable> {
IntWritable result=new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, 
Context context
) throws IOException, InterruptedException {
int sum=0;
for (IntWritable iw:values)
{
sum+=iw.get();
}
result.set(sum);
context.write(key, result)	;
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseCount");
job.setNumReduceTasks(2);
job.setJarByClass(HouseCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}


第三个MR

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.Logger;
/*
* 汇总近三个月统计楼盘之间共同出现的次数,考虑衰减系数, 并最后a b 转成 b a输出一次
* 输入:
* 日期  楼盘1 楼盘2 共同出现的次数
* 
* 输出
* 楼盘1 楼盘2 共同出现的次数(考虑了衰减系数,每天的衰减系数不一样)
* 
*/
public class HouseCountHz {
public static class HouseCountHzMapper 
extends Mapper<LongWritable, Text, Text, FloatWritable>{
Text keyv=new Text();
FloatWritable valuev=new FloatWritable();
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String[] s=value.toString().split("\t");
keyv.set(s[1]+"	"+s[2]);//楼盘1,楼盘2
Calendar date1=Calendar.getInstance();
Calendar d2=Calendar.getInstance();
Date b = null;
SimpleDateFormat sdf=new SimpleDateFormat("yyyy-MM-dd");
try {
b=sdf.parse(s[0]);
} catch (ParseException e) {
e.printStackTrace();
}
d2.setTime(b);
long n=date1.getTimeInMillis();
long birth=d2.getTimeInMillis();
long sss=n-birth;
int day=(int)((sss)/(3600*24*1000)); //该条记录的日期与当前日期的日期差
float factor=1/(1+(float)(day-1)/10); //衰减系数
valuev.set(Float.parseFloat(s[3])*factor);
context.write(keyv, valuev);
}
}
public static class HouseCountHzReducer 
extends Reducer<Text,FloatWritable,Text,FloatWritable> {
FloatWritable result=new FloatWritable();
Text keyreverse=new Text();
public void reduce(Text key, Iterable<FloatWritable> values, 
Context context
) throws IOException, InterruptedException {
float sum=0;
for (FloatWritable iw:values)
{
sum+=iw.get();
}
result.set(sum);
String[] keys=key.toString().split("\t");
keyreverse.set(keys[1]+"	"+keys[0]);
context.write(key, result)	;
context.write(keyreverse, result)	;
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseCountHz");
job.setNumReduceTasks(2);
job.setJarByClass(HouseCountHz.class);
job.setMapperClass(HouseCountHzMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FloatWritable.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(HouseCountHzReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}


第四个MR

import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
/*
* 输入数据:
* 楼盘1 楼盘2 共同出现的次数
* 
* 输出数据
*  楼盘1 楼盘2,楼盘3,楼盘4 (按次数排序)
*/
public class HouseRowToCol {
public static class Partitioner1 extends Partitioner<TextPairSecond, Text> {
@Override
//分区
public int getPartition(TextPairSecond key, Text value, int numParititon) {
return Math.abs((new Text(key.getFirst().toString()+key.getSecond().toString())).hashCode() * 127) % numParititon;
}
}
//分组
public static class Comp1 extends WritableComparator {
public Comp1() {
super(TextPairSecond.class, true);
}
@SuppressWarnings("unchecked")
public int compare(WritableComparable a, WritableComparable b) {
TextPairSecond t1 = (TextPairSecond) a;
TextPairSecond t2 = (TextPairSecond) b;
return t1.getFirst().compareTo(t2.getFirst());
}
}
//排序
public static class KeyComp extends WritableComparator {
public KeyComp() {
super(TextPairSecond.class, true);
}
@SuppressWarnings("unchecked")
public int compare(WritableComparable a, WritableComparable b) {
TextPairSecond t1 = (TextPairSecond) a;
TextPairSecond t2 = (TextPairSecond) b;
int comp= t1.getFirst().compareTo(t2.getFirst());
if (comp!=0)
return comp;
return -t1.getSecond().compareTo(t2.getSecond());
}
} 
public static class HouseRowToColMapper 
extends Mapper<LongWritable, Text, TextPairSecond, Text>{
Text houseid1=new Text();
Text houseid2=new Text();
FloatWritable weight=new FloatWritable();
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String s[]=value.toString().split("\t");
weight.set(Float.parseFloat(s[2]));
houseid1.set(s[0]);
houseid2.set(s[1]);
TextPairSecond tp=new TextPairSecond(houseid1,weight); 
context.write(tp, houseid2);
}
}
public static class HouseRowToColReducer 
extends Reducer<TextPairSecond,Text,Text,Text> {
Text valuev=new Text();
public void reduce(TextPairSecond key, Iterable<Text> values, 
Context context
) throws IOException, InterruptedException {
Text keyv=key.getFirst();
Iterator<Text> it=values.iterator();
StringBuilder sb=new StringBuilder(it.next().toString());
while(it.hasNext())
{
sb.append(","+it.next().toString());
}
valuev.set(sb.toString());
context.write(keyv, valuev);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseRowToCol");
job.setNumReduceTasks(4);
job.setJarByClass(HouseRowToCol.class);
job.setMapperClass(HouseRowToColMapper.class);
job.setMapOutputKeyClass(TextPairSecond.class);
job.setMapOutputValueClass(Text.class);
// 设置partition
job.setPartitionerClass(Partitioner1.class);
// 在分区之后按照指定的条件分组
job.setGroupingComparatorClass(Comp1.class);
job.setSortComparatorClass(KeyComp.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(HouseRowToColReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}




 

 

这篇关于mapreduce实现浏览该商品的人大多数还浏览了经典应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067445

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien