【C语言】进程间通信之命名管道fifo

2024-06-16 18:52

本文主要是介绍【C语言】进程间通信之命名管道fifo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

进程间通信之命名管道fifo

  • 命名管道fifo()
    • fifo_write.c
    • fifo_read.c
  • 最后

命名管道fifo()

FIFO可以用于没有血缘关系的进程间通信。FIFO是Linux基本文件类型的一种,文件类型为p。

简单来说,FIFO可以理解为一个特殊的文件,创建它之后,可以使用 ls或ll来进行查看文件基本信息。

FIFO就是标识内核的一条管道,进程可以通过read/write进行读写操作。实际就是进程间在对内核缓冲区在进行读写操作从而进行通信。

注意事项 :这里mkfifo函数的路径需要时Linux本地文件夹下,不能是挂载的文件夹路径,此外需要当前用户有相应权限,如果没有权限可以使用sudo利用root角色来执行

还可以使用命令的方式来提前创建fifo文件

sudo mkfifo ./mfifo

或者使用函数mkfifo()进行创建

#include <sys/types.h>
#include <sys/stat.h>int mkfifo(const char *pathname, mode_t mode);
第一个参数是创建fifo的路径,第二个参数是fifo的权限返回值等于0 创建成功其他 创建失败,由下面进行判断具体原因EACCES 路径名中的一个目录不允许搜索(执行)权限EDQUOT 用户在文件系统上的磁盘块或索引节点配额已用完。EEXIST 路径名已存在。ENAMETOOLONG 路径名的总长度大于PATH_MAX,或者单个文件名组件的长度大于NAME_MAX。ENOENT 路径名中的目录组件不存在ENOSPC 目录或文件系统没有空间容纳新文件。ENOTDIR 在路径名中用作目录的组件实际上不是目录。EROFS  路径名只读

fifo_write.c

//fifo_write.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>int main()
{int ret = mkfifo("/home/myfifo", 0777);if (ret != 0){perror("mkfifo error");return -1;}int fd = open("/home/myfifo",O_RDWR);if (fd<0){perror("open error");return -1;}int i = 0;char buf[64];while(1){memset(buf, 0x00, sizeof(buf));sprintf(buf, "%d:%s", i, "hello");write(fd, buf, strlen(buf));sleep(1);i++;}//关闭文件close(fd);return 0;
}

fifo_read.c

//fifo_read.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>int main()
{int fd = open("/home/myfifo",O_RDWR);if (fd<0){perror("open error");return -1;}char buf[64];while(1){memset(buf, 0x00, sizeof(buf));ssize_t len = read(fd, buf, sizeof(buf));printf("str len is [%ld], [%s]\n",len,buf);}//关闭文件close(fd);return 0;
}

最后

推荐一个零声教育学习教程,个人觉得老师讲得不错,分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis,
fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,
TCP/IP,协程,DPDK等技术内容,点击立即学习:链接

这篇关于【C语言】进程间通信之命名管道fifo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067264

相关文章

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

C#如何优雅地取消进程的执行之Cancellation详解

《C#如何优雅地取消进程的执行之Cancellation详解》本文介绍了.NET框架中的取消协作模型,包括CancellationToken的使用、取消请求的发送和接收、以及如何处理取消事件... 目录概述与取消线程相关的类型代码举例操作取消vs对象取消监听并响应取消请求轮询监听通过回调注册进行监听使用Wa

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而