小白跟做江科大32单片机之定时器输出比较

2024-06-16 15:04

本文主要是介绍小白跟做江科大32单片机之定时器输出比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理部分

背景

GPIO口是数字输出端口,只能输出1和0。但是通过PWM,可以使其控制LED呼吸灯亮灭的程度

1.通过CNT和CCR进行比较,可以输出一定频率和占空比的PWM波形

2.通用定时器有4个CCR,可同时输出4路PWM波形,但只有一个CNT

输出比较部分,通过比较CNT和CCR的值,CNT计数自增,CCR是我们给定的一个值,这样就可以输出一定占空比的输出波形

3.PWM波形

惯性系统就是断电之后不会立刻停止运行的器件,eg:LED

4.如何输出PWM波形

外部比较->输出oc1ref->极性选择->CCIP写0代表不翻转,写1代表翻转->输出使能->OC1->CPIO

本实验只用PWM模式1

5.

时钟源选择->时基单元->输出比较->CNT、CCR比较

我们可以设定CCR为固定值

6.

7.STM32外设

推挽输出示意图:

上管导通,输出高电压,下关导通,输出低电压。

H桥电路,两个推挽电路组成,这是电流从右边流向左边


代码部分

思路

  1. 开启PWM时钟,TIM外设,GPIO外设
  2. 时基单元配置
  3. 配置输出比较单元:CCR值,比较模式,极性选择,输出使能
  4. GPIO配置:复用推挽输出GPIO口
  5. 运行控制配置:计数器

实现

实验一

1.复制上一小节的定时器项目,改名为自己想取的名字,在hardware下新建PWM._LED.c和PWM._LED.h文件,并按照江科大老师所给的电路图进行连接

2.PWM._LED.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:定时初始化
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数配置为外部时钟,定时器相当于计数器
  */
void PWM_Init(void)
{
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    
    /*GPIO初始化P0口*/
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;;
    GPIO_InitStructure.GPIO_Pin= GPIO_Pin_0;
    GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);    
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    
    /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;        //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;    //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                    //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);                //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元    
    
    /*输出比较初始化*/
    TIM_OCInitTypeDef TIM_OCInitStructure;                            //定义结构体变量
    TIM_OCStructInit(&TIM_OCInitStructure);                            //结构体初始化,若结构体没有完整赋值
    
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;                //输出比较模式,选择PWM模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;        //输出极性,选择为高,若选择极性为低,则输出高低电平取反
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;    //输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                                //初始的CCR值
    TIM_OC1Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
                                                                
    
}

/**
  * 函    数:返回定时器CNT的值
  * 参    数:无
  * 返 回 值:定时器CNT的值,范围:0~65535
  */
void PWM_SetCompare1(uint16_t Compare)
{
    TIM_SetCompare1(TIM2, Compare);        //设置CCR1的值
}


3.PWM._LED.h

#ifndef _PWM._LED__H
#define _PWM._LED__H

void PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);

#endif

4.main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "PWM._LED.h"

uint16_t Num;            //定义在定时器中断里自增的变量

int main(void)
{
    /*模块初始化*/
    
    PWM_Init();
    while (1)
    {
        for(Num=0;Num<100;Num++)
        {
            PWM_SetCompare1(Num);
            Delay_ms(10);
        }
        for(Num=100;Num>0;Num--)
        {
            PWM_SetCompare1(Num);
            Delay_ms(10);
        }
    }
}
5.整体结构

6.试验结果

定时器输出PWM波形产生LED呼吸灯效果

实验二

1.按照江科大老师所给的电路图进行连接

2.修改PWM._LED.c文件

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    
    /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA1引脚初始化为复用推挽输出    
                                                                    //受外设控制的引脚,均需要配置为复用模式
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    
    /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;                //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
    
    /*输出比较初始化*/ 
    TIM_OCInitTypeDef TIM_OCInitStructure;                            //定义结构体变量
    TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值
                                                                    //则最好执行此函数,给结构体所有成员都赋一个默认值
                                                                    //避免结构体初值不确定的问题
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                                //初始的CCR值
    TIM_OC2Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC2Init,配置TIM2的输出比较通道2
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare2(uint16_t Compare)
{
    TIM_SetCompare2(TIM2, Compare);        //设置CCR2的值
}
 

3.修改PWM._LED.h文件

#ifndef _PWM._LED___H
#define _PWM._LED___H


void PWM_Init(void);
void PWM_SetCompare2(uint16_t Compare);

#endif

4.hardware中新建Servo.c文件对舵机进行操作

#include "stm32f10x.h"                  // Device header
#include "PWM._LED.h"


/**
  * 函    数:舵机初始化
  * 参    数:无
  * 返 回 值:无
  */
void Servo_Init(void)
{
    PWM_Init();                                    //初始化舵机的底层PWM
}

/**
  * 函    数:舵机设置角度
  * 参    数:Angle 要设置的舵机角度,范围:0~180
  * 返 回 值:无
  */
void Servo_SetAngle(float Angle)
{
    PWM_SetCompare2(Angle / 180 * 2000 + 500);    //设置占空比
                                                //将角度线性变换,对应到舵机要求的占空比范围上
}
 

5.新建Servo.h文件

#ifndef _SERVO__H
#define _SERVO__H

void Servo_Init(void);
void Servo_SetAngle(float Angle);

#endif

6.修改main.c文件

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Servo.h"
#include "Key.h"

uint8_t KeyNum;            //定义用于接收键码的变量
float Angle;            //定义角度变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    Servo_Init();        //舵机初始化
    Key_Init();            //按键初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Angle:");    //1行1列显示字符串Angle:
    
    while (1)
    {
        KeyNum = Key_GetNum();            //获取按键键码
        if (KeyNum == 2)                //按键按下
        {
            Angle += 30;                //角度变量自增30
            if (Angle > 180)            //角度变量超过180后
            {
                Angle = 0;                //角度变量归零
            }
        }
        Servo_SetAngle(Angle);            //设置舵机的角度为角度变量
        OLED_ShowNum(1, 7, Angle, 3);    //OLED显示角度变量
    }
}
7.程序结构

8.实验结果

STM32之定时器输出WPM控制舵机

实验三

 1.按照江科大老师所给的电路图进行连接,VIM必须在左下角

2.修改PWM_LED.c文件

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    
    /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA2引脚初始化为复用推挽输出    
                                                                    //受外设控制的引脚,均需要配置为复用模式
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    
    /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                 //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;               //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
    
    /*输出比较初始化*/ 
    TIM_OCInitTypeDef TIM_OCInitStructure;                            //定义结构体变量
    TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值
                                                                    //则最好执行此函数,给结构体所有成员都赋一个默认值
                                                                    //避免结构体初值不确定的问题
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                                //初始的CCR值
    TIM_OC3Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC3Init,配置TIM2的输出比较通道3
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare3(uint16_t Compare)
{
    TIM_SetCompare3(TIM2, Compare);        //设置CCR3的值
}
 

3.修改PWM_LED.h文件

#ifndef _PWD_LWD__H
#define _PWD_LWD__H

void PWM_Init(void);
void PWM_SetCompare3(uint16_t Compare);

#endif
 

4.创建Motor.c文件

#include "stm32f10x.h"                  // Device header
#include "PWM_LED.h"

/**
  * 函    数:直流电机初始化
  * 参    数:无
  * 返 回 值:无
  */
void Motor_Init(void)
{
    /*开启时钟*/
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);        //开启GPIOA的时钟
    
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                        //将PA4和PA5引脚初始化为推挽输出    
    
    PWM_Init();                                                    //初始化直流电机的底层PWM
}

/**
  * 函    数:直流电机设置速度
  * 参    数:Speed 要设置的速度,范围:-100~100
  * 返 回 值:无
  */
void Motor_SetSpeed(int8_t Speed)
{
    if (Speed >= 0)                            //如果设置正转的速度值
    {
        GPIO_SetBits(GPIOA, GPIO_Pin_4);    //PA4置高电平
        GPIO_ResetBits(GPIOA, GPIO_Pin_5);    //PA5置低电平,设置方向为正转
        PWM_SetCompare3(Speed);                //PWM设置为速度值
    }
    else                                    //否则,即设置反转的速度值
    {
        GPIO_ResetBits(GPIOA, GPIO_Pin_4);    //PA4置低电平
        GPIO_SetBits(GPIOA, GPIO_Pin_5);    //PA5置高电平,设置方向为反转
        PWM_SetCompare3(-Speed);            //PWM设置为负的速度值,因为此时速度值为负数,而PWM只能给正数
    }
}
 

5.创建Motor.h文件

#ifndef __MOTOR_H
#define __MOTOR_H

void Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);

#endif
 

6.修改main.c文件

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"
uint8_t KeyNum;        //定义用于接收按键键码的变量
int8_t Speed;        //定义速度变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    Motor_Init();        //直流电机初始化
    Key_Init();            //按键初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Speed:");        //1行1列显示字符串Speed:
    
    while (1)
    {
        KeyNum = Key_GetNum();                //获取按键键码
        if (KeyNum == 2)                    //按键按下
        {
            Speed += 20;                    //速度变量自增20
            if (Speed > 100)                //速度变量超过100后
            {
                Speed = -100;                //速度变量变为-100
                                            //此操作会让电机旋转方向突然改变,可能会因供电不足而导致单片机复位
                                            //若出现了此现象,则应避免使用这样的操作
            }
        }
        Motor_SetSpeed(Speed);                //设置直流电机的速度为速度变量
        OLED_ShowSignedNum(1, 7, Speed, 3);    //OLED显示速度变量
    }
}
 

7.程序结构

8.实验结果

这篇关于小白跟做江科大32单片机之定时器输出比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066765

相关文章

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

关键字synchronized、volatile的比较

关键字volatile是线程同步的轻量级实现,所以volatile性能肯定比synchronized要好,并且volatile只能修饰于变量,而synchronized可以修饰方法,以及代码块。随着JDK新版本的发布,synchronized关键字的执行效率上得到很大提升,在开发中使用synchronized关键字的比率还是比较大的。多线程访问volatile不会发生阻塞,而synchronize