简单的基于小波变换的图像压缩(Python)

2024-06-16 12:28

本文主要是介绍简单的基于小波变换的图像压缩(Python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023 沃尔夫数学奖得主,给了杜克大学的Ingrid Daubechies(多贝西)教授

以色列沃尔夫基金会理事会成员 Michael Lin 教授在周二宣布: “Ingrid Daubechies is awarded the Wolf Prize for her work in the creation and development of wavelet theory and modern time frequency analysis。"

多贝西教授在小波理论和调和分析领域做出了重大贡献,她的研究彻底改变了图像和信号的数字处理方式,为数据压缩提供了标准和灵活的算法。多贝西的研究成果带来了多个领域技术的创新,包括医学成像、无线通信,和数字电影,比如:她早期的研究成果被用于图像压缩,JPEG 2000格式图片就是通过Daubechies小波压缩而成,它们也被用于将声音序列压缩成 MP3 文件;在更近的一些应用领域中,它们被用于增强和重建哈勃望远镜早期的图像,检测伪造的文件和指纹等等。

import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
import pywt
import pywt.data
from skimage.data import camera
from skimage.util import random_noise
from skimage import img_as_ubyte
from skimage.metrics import peak_signal_noise_ratio as psnr
print(pywt.wavelist())
['bior1.1', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8', 'cgau1', 'cgau2', 'cgau3', 'cgau4', 'cgau5', 'cgau6', 'cgau7', 'cgau8', 'cmor', 'coif1', 'coif2', 'coif3', 'coif4', 'coif5', 'coif6', 'coif7', 'coif8', 'coif9', 'coif10', 'coif11', 'coif12', 'coif13', 'coif14', 'coif15', 'coif16', 'coif17', 'db1', 'db2', 'db3', 'db4', 'db5', 'db6', 'db7', 'db8', 'db9', 'db10', 'db11', 'db12', 'db13', 'db14', 'db15', 'db16', 'db17', 'db18', 'db19', 'db20', 'db21', 'db22', 'db23', 'db24', 'db25', 'db26', 'db27', 'db28', 'db29', 'db30', 'db31', 'db32', 'db33', 'db34', 'db35', 'db36', 'db37', 'db38', 'dmey', 'fbsp', 'gaus1', 'gaus2', 'gaus3', 'gaus4', 'gaus5', 'gaus6', 'gaus7', 'gaus8', 'haar', 'mexh', 'morl', 'rbio1.1', 'rbio1.3', 'rbio1.5', 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7', 'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8', 'shan', 'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 'sym7', 'sym8', 'sym9', 'sym10', 'sym11', 'sym12', 'sym13', 'sym14', 'sym15', 'sym16', 'sym17', 'sym18', 'sym19', 'sym20']

path = {'compressed_haar': 'wavelet_compression/compressed_haar.jpg', 'compressed_db1': 'C:/romena/unige/wavelet_compression/compressed_db1.jpg', 'compressed_db2': 'C:/romena/unige/wavelet_compression/compressed_db2.jpg', 'compressed_bior1.3': 'C:/romena/unige/wavelet_compression/compressed_bior1.3.jpg', 'noisy': 'C:/romena/unige/wavelet_compression/noisy.jpeg'}
for i in path:size_img= os.path.getsize(path[i])size_img= size_img/1024print(i +'='+ str(size_img) + 'KB')size_img= 0

Wavelet: haar, Threshold: 5, PSNR: 4.72 dB, CR: 1.16, Size: 71.64 KB
Wavelet: haar, Threshold: 10, PSNR: 4.72 dB, CR: 1.16, Size: 71.64 KB
Wavelet: haar, Threshold: 20, PSNR: 4.72 dB, CR: 1.16, Size: 71.64 KB
Wavelet: db1, Threshold: 5, PSNR: 4.72 dB, CR: 1.16, Size: 71.64 KB
Wavelet: db1, Threshold: 10, PSNR: 4.72 dB, CR: 1.16, Size: 71.64 KB
Wavelet: db1, Threshold: 20, PSNR: 4.72 dB, CR: 1.16, Size: 71.64 KB
Wavelet: db2, Threshold: 5, PSNR: 4.72 dB, CR: 1.05, Size: 78.92 KB
Wavelet: db2, Threshold: 10, PSNR: 4.72 dB, CR: 1.05, Size: 78.92 KB
Wavelet: db2, Threshold: 20, PSNR: 4.72 dB, CR: 1.05, Size: 78.92 KB
Wavelet: coif2, Threshold: 5, PSNR: 4.72 dB, CR: 1.22, Size: 67.99 KB
Wavelet: coif2, Threshold: 10, PSNR: 4.72 dB, CR: 1.22, Size: 67.99 KB
Wavelet: coif2, Threshold: 20, PSNR: 4.72 dB, CR: 1.22, Size: 67.99 KB
Wavelet: custom, Threshold: 5, PSNR: 4.69 dB, CR: 1.31, Size: 63.16 KB
Wavelet: custom, Threshold: 10, PSNR: 4.69 dB, CR: 1.31, Size: 63.16 KB
Wavelet: custom, Threshold: 20, PSNR: 4.69 dB, CR: 1.31, Size: 63.16 KB

担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于简单的基于小波变换的图像压缩(Python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066455

相关文章

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核