[C++][数据结构][AVL树]详细讲解

2024-06-16 07:44

本文主要是介绍[C++][数据结构][AVL树]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.AVL树的概念
  • 2.AVL树节点的定义
  • 3. AVL树的插入
  • 4.AVL树的旋转
    • 1.新节点插入较高左子树的左侧 -- 左左:右单旋
    • 2.新节点插入较高右子树的右侧 -- 右右:左单旋
    • 3.新节点插入较高左子树的右侧 -- 左右:先左单旋再右单旋
    • 4.新节点插入较高右子树的左侧 -- 右左:先右单旋再左单旋
  • 5.AVL树的验证
  • 6.AVL树的删除(了解)
  • 7.AVL树的性能


1.AVL树的概念

  • 二叉搜索树中,如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下,如何解决?

    • 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度
  • AVL树具有以下性质:

    • 它的左右子树都是AVL树
    • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
      • 规定:平衡因子 = 右子树的高度 - 左子树的高度
        请添加图片描述
  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树

    • 如果它有n个结点,其高度可保持在O(logN),搜索时间复杂度O(logN)

2.AVL树节点的定义

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf;  // balance factorAVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};

3. AVL树的插入

  • AVL树就是在二叉搜索树的基础上引入了平衡因子,那么AVL树的插入过程可以分为两步:
    • 按照二叉搜索树的方式插入新节点
    • 调整节点的平衡因子
  • 更新平衡因子的规则
    • 新增在右,parent->_bf++; 新增在左,parent->_bf–;
    • 更新后,parent->_bf == 1/-1
      • 说明parent插入前的平衡因子是0,左右子树高度相等
      • 插入后有一边高,parent高度变了,需要继续往上更新
    • 更新后,parent->_bf == 0
      • 说明parent插入前的平衡因子是1/-1,说明左右子树一边高一边低
      • 插入后两边一样高,插入填上了矮的那边,parent所在子树高度不变,不需要继续网上更新
    • 更新后,parent->_bf == 2/-2
      • 说明parent插入前的平衡因子是1/-1,已经达到平衡临界值
      • 插入变成2/-2,打破平衡,parent所在的子树需要旋转处理
    • 更新后,abs(parent->_bf) > 2,不可能
      • 如果存在,则说明插入前就不是AVL树,需要去检查之前操作的问题
bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// 控制平衡// 1.更新平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (abs(parent->_bf) == 1){parent = parent->_parent; // 继续向上更新cur = cur->_parent;}else if(abs(parent->_bf) == 2){// parent所在子树已经失衡,旋转调整if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else{assert(false); // 理论不会走到这}break;}else{assert(false); // 理论不会走到这}}return true;
}

4.AVL树的旋转

  • 如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化
  • 根据节点插入位置的不同,AVL树的旋转分为四种

1.新节点插入较高左子树的左侧 – 左左:右单旋

请添加图片描述

void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}Node* grandParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (grandParent->_left == parent){grandParent->_left = subL;}else{grandParent->_right = subL;}subL->_parent = grandParent;}subL->_bf = parent->_bf = 0;
}

2.新节点插入较高右子树的右侧 – 右右:左单旋

请添加图片描述

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL) // 防止subRL本来就为空,对空指针访问{subRL->_parent = parent;}// 用于判断原来的parent是否是子树Node* grandParent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (grandParent->_left == parent){grandParent->_left = subR;}else{grandParent->_right = subR;}subR->_parent = grandParent;}subR->_bf = parent->_bf = 0;
}

3.新节点插入较高左子树的右侧 – 左右:先左单旋再右单旋

请添加图片描述

  • 将双旋变成单旋后再旋转
    • 即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);subLR->_bf = 0;if (bf == 1){parent->_bf = 0;subL->_bf = -1;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;}else if (bf == 0) // 原来的树/子树只有这三个节点{parent->_bf = 0;subL->_bf = 0;}else{assert(false); // 理论不会走到这}
}

4.新节点插入较高右子树的左侧 – 右左:先右单旋再左单旋

请添加图片描述

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);subRL->_bf = 0;if (bf == 1){parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;}else if (bf == 0){parent->_bf = subR->_bf = 0;}else{assert(false); // 理论不会走到这}
}

5.AVL树的验证

  • AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
    • 验证其为二叉搜索树
      • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
    • 验证其为平衡树
      • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
      • 节点的平衡因子是否计算正确
void InOrder()
{_InOrder(_root);cout << endl;
}bool IsBalance()
{return _IsBalance(_root);
}void _InOrder(Node* root)
{if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);
}bool _IsBalance(Node* root)
{if (root == nullptr){return true;}int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);int diff = rightHeight - leftHeight;if (diff != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return abs(diff) < 2 && _IsBalance(root->_left) && _IsBalance(root->_right);
}int Height(Node* root)
{if (root == nullptr){return 0;}return max(Height(root->_left), Height(root->_right)) + 1; //统计高度为后序
}

6.AVL树的删除(了解)

  • 因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子
  • 只不过与删除不同的是,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置

7.AVL树的性能

  • AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即logN
  • 但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:
    • 插入时要维护其绝对平衡,旋转的次数比较多
    • 更差的是在删除时, 有可能一直要让旋转持续到根的位置
  • 因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合

这篇关于[C++][数据结构][AVL树]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065851

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll