【CS.AL】算法核心之贪心算法:从入门到进阶

2024-06-16 03:12

本文主要是介绍【CS.AL】算法核心之贪心算法:从入门到进阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. 概述
    • 2. 适用场景
    • 3. 设计步骤
    • 4. 优缺点
    • 5. 典型应用
    • 6. 题目和代码示例
      • 6.1 简单题目:找零问题
      • 6.2 中等题目:区间调度问题
      • 6.3 困难题目:分数背包问题
    • 7. 题目和思路表格
    • 8. 总结
    • References

1000.1.CS.AL.1.4-核心-GreedyAlgorithm-Created: 2024-06-13.Thursday17:47
在这里插入图片描述

1. 概述

贪心算法是一种求解优化问题的算法策略。在每一步选择中,贪心算法都会选择当前最优解,希望通过一系列局部最优解的选择,达到全局最优解。贪心算法不回溯,不进行全局考虑,而是根据局部情况作出当前最优的选择。

2. 适用场景

贪心算法适用于一类特殊问题,即具有贪心选择性质的问题。这类问题满足每一步的选择都是局部最优的,并且不同步骤之间没有依赖关系,可以独立地做出选择。在这种情况下,贪心算法通常可以找到全局最优解或者近似最优解。

3. 设计步骤

  1. 确定问题的最优解性质:贪心算法求解问题时,首先要确定问题是否具有最优子结构和贪心选择性质。如果满足这两个性质,那么贪心算法可能是可行的。
  2. 选择合适的贪心策略:在每一步中,需要选择一个局部最优解。这就要根据问题的具体特点,设计适合的贪心策略,使得每次选择都是当前的最优解。
  3. 构建贪心算法:根据选择的贪心策略,逐步构建出贪心算法,不断做出当前最优的选择,直至达到全局最优解或者满足问题的要求。

4. 优缺点

  • 优点:贪心算法通常简单、高效,且易于实现。在一些特定问题中,贪心算法可以快速找到最优或近似最优解。
  • 缺点:贪心算法并不适用于所有问题,有些问题并不具备贪心选择性质,因此贪心算法可能得到局部最优解而不是全局最优解。在这种情况下,需要考虑其他算法策略。

5. 典型应用

  • 最小生成树问题:如Prim算法和Kruskal算法用于求解图中的最小生成树。
  • 背包问题:如分数背包问题、0-1背包问题等,贪心算法在某些情况下可以得到近似最优解。
  • 霍夫曼编码:用于数据压缩,通过贪心选择构建最优前缀编码。
  • 最短路径问题:如Dijkstra算法和A*算法用于求解图中的最短路径。

6. 题目和代码示例

6.1 简单题目:找零问题

题目描述:给定不同面值的硬币,求最少硬币数使得总金额为给定值。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 函数声明
int coinChange(std::vector<int>& coins, int amount);int main() {std::vector<int> coins = {1, 2, 5};int amount = 11;std::cout << "最少硬币数: " << coinChange(coins, amount) << std::endl;return 0;
}// 找零问题:求最少硬币数
int coinChange(std::vector<int>& coins, int amount) {// 步骤 1: 对硬币面值从大到小排序std::sort(coins.rbegin(), coins.rend());int count = 0;// 步骤 2: 遍历硬币面值,逐步减少目标金额for (int coin : coins) {while (amount >= coin) {amount -= coin;count++;}}// 步骤 3: 检查是否正好找零成功return amount == 0 ? count : -1;
}

Ref. ![[1000.03.CS.PL.C++.4.2-STL-Algorithms-SortingOperations#1.1 简述]]

Others.

def coin_change(coins, amount):coins.sort(reverse=True)count = 0for coin in coins:while amount >= coin:amount -= coincount += 1return count if amount == 0 else -1# 示例
coins = [1, 2, 5]
amount = 11
print(coin_change(coins, amount))  # 输出: 3 (5 + 5 + 1)

6.2 中等题目:区间调度问题

题目描述:给定多个会议的开始和结束时间,求最多能安排的会议数量。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 会议结构体
struct Meeting {int start;int end;
};// 函数声明
int maxMeetings(std::vector<Meeting>& meetings);int main() {std::vector<Meeting> meetings = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};std::cout << "最多能安排的会议数量: " << maxMeetings(meetings) << std::endl;return 0;
}// 区间调度问题:求最多能安排的会议数量
int maxMeetings(std::vector<Meeting>& meetings) {// 步骤 1: 根据会议结束时间排序std::sort(meetings.begin(), meetings.end(), [](const Meeting& a, const Meeting& b) {return a.end < b.end;});int count = 0;int endTime = 0;// 步骤 2: 遍历会议,选择结束时间最早的会议for (const auto& meeting : meetings) {if (meeting.start >= endTime) {count++;endTime = meeting.end;}}return count;
}

ref.

def max_meetings(meetings):meetings.sort(key=lambda x: x[1])count = 0end_time = 0for meeting in meetings:if meeting[0] >= end_time:count += 1end_time = meeting[1]return count# 示例
meetings = [(1, 2), (3, 4), (0, 6), (5, 7), (8, 9), (5, 9)]
print(max_meetings(meetings))  # 输出: 4

6.3 困难题目:分数背包问题

题目描述:给定物品的重量和价值,求在背包容量限制下的最大价值,物品可以分割。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 物品结构体
struct Item {double value;double weight;
};// 函数声明
double fractionalKnapsack(std::vector<Item>& items, double capacity);int main() {std::vector<Item> items = {{60, 10}, {100, 20}, {120, 30}};double capacity = 50;std::cout << "背包的最大价值: " << fractionalKnapsack(items, capacity) << std::endl;return 0;
}// 分数背包问题:求在背包容量限制下的最大价值
double fractionalKnapsack(std::vector<Item>& items, double capacity) {// 步骤 1: 根据物品单位重量价值排序std::sort(items.begin(), items.end(), [](const Item& a, const Item& b) {return (a.value / a.weight) > (b.value / b.weight);});double totalValue = 0;// 步骤 2: 遍历物品,选择单位重量价值最高的物品for (const auto& item : items) {if (capacity >= item.weight) {capacity -= item.weight;totalValue += item.value;} else {totalValue += item.value * (capacity / item.weight);break;}}return totalValue;
}

ref.

def fractional_knapsack(values, weights, capacity):items = list(zip(values, weights))items.sort(key=lambda x: x[0] / x[1], reverse=True)total_value = 0for value, weight in items:if capacity >= weight:capacity -= weighttotal_value += valueelse:total_value += value * (capacity / weight)breakreturn total_value# 示例
values = [60, 100, 120]
weights = [10, 20, 30]
capacity = 50
print(fractional_knapsack(values, weights, capacity))  # 输出: 240.0

7. 题目和思路表格

序号题目题目描述贪心策略代码实现
1找零问题求最少硬币数使得总金额为给定值每次选择面值最大的硬币代码
2区间调度问题求最多能安排的会议数量每次选择结束时间最早的会议代码
3分数背包问题求在背包容量限制下的最大价值每次选择单位重量价值最高的物品代码
4最小生成树用于求解图中的最小生成树每次选择权重最小的边-
5霍夫曼编码用于数据压缩每次选择频率最低的节点进行合并-
6最短路径用于求解图中的最短路径每次选择当前节点到未访问节点的最短路径-
7活动选择问题求最多可选择的互不相交的活动每次选择结束时间最早的活动-
8跳跃游戏判断能否跳到最后一个位置每次选择跳跃距离最大的步骤-
9加油站问题求最少加油次数到达目的地每次选择油量最多的加油站-
10股票买卖求最大收益每次选择局部最低点买入,局部最高点卖出-

8. 总结

贪心算法是一种简单而高效的算法策略,在解决满足贪心选择性质的问题时,能够得到较好的结果。然而,要注意贪心算法的局限性,它不适用于所有问题,有些问题需要考虑其他算法设计策略,如分治、动态规划等。因此,在实际应用中,需要根据问题的性质和要求选择合适的算法策略。通过理解和掌握上述贪心算法的例子和思路,能够有效地提升解决问题的能力。

References

这篇关于【CS.AL】算法核心之贪心算法:从入门到进阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065334

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

MySQL进阶之路索引失效的11种情况详析

《MySQL进阶之路索引失效的11种情况详析》:本文主要介绍MySQL查询优化中的11种常见情况,包括索引的使用和优化策略,通过这些策略,开发者可以显著提升查询性能,需要的朋友可以参考下... 目录前言图示1. 使用不等式操作符(!=, <, >)2. 使用 OR 连接多个条件3. 对索引字段进行计算操作4

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1