【CS.AL】算法核心之贪心算法:从入门到进阶

2024-06-16 03:12

本文主要是介绍【CS.AL】算法核心之贪心算法:从入门到进阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. 概述
    • 2. 适用场景
    • 3. 设计步骤
    • 4. 优缺点
    • 5. 典型应用
    • 6. 题目和代码示例
      • 6.1 简单题目:找零问题
      • 6.2 中等题目:区间调度问题
      • 6.3 困难题目:分数背包问题
    • 7. 题目和思路表格
    • 8. 总结
    • References

1000.1.CS.AL.1.4-核心-GreedyAlgorithm-Created: 2024-06-13.Thursday17:47
在这里插入图片描述

1. 概述

贪心算法是一种求解优化问题的算法策略。在每一步选择中,贪心算法都会选择当前最优解,希望通过一系列局部最优解的选择,达到全局最优解。贪心算法不回溯,不进行全局考虑,而是根据局部情况作出当前最优的选择。

2. 适用场景

贪心算法适用于一类特殊问题,即具有贪心选择性质的问题。这类问题满足每一步的选择都是局部最优的,并且不同步骤之间没有依赖关系,可以独立地做出选择。在这种情况下,贪心算法通常可以找到全局最优解或者近似最优解。

3. 设计步骤

  1. 确定问题的最优解性质:贪心算法求解问题时,首先要确定问题是否具有最优子结构和贪心选择性质。如果满足这两个性质,那么贪心算法可能是可行的。
  2. 选择合适的贪心策略:在每一步中,需要选择一个局部最优解。这就要根据问题的具体特点,设计适合的贪心策略,使得每次选择都是当前的最优解。
  3. 构建贪心算法:根据选择的贪心策略,逐步构建出贪心算法,不断做出当前最优的选择,直至达到全局最优解或者满足问题的要求。

4. 优缺点

  • 优点:贪心算法通常简单、高效,且易于实现。在一些特定问题中,贪心算法可以快速找到最优或近似最优解。
  • 缺点:贪心算法并不适用于所有问题,有些问题并不具备贪心选择性质,因此贪心算法可能得到局部最优解而不是全局最优解。在这种情况下,需要考虑其他算法策略。

5. 典型应用

  • 最小生成树问题:如Prim算法和Kruskal算法用于求解图中的最小生成树。
  • 背包问题:如分数背包问题、0-1背包问题等,贪心算法在某些情况下可以得到近似最优解。
  • 霍夫曼编码:用于数据压缩,通过贪心选择构建最优前缀编码。
  • 最短路径问题:如Dijkstra算法和A*算法用于求解图中的最短路径。

6. 题目和代码示例

6.1 简单题目:找零问题

题目描述:给定不同面值的硬币,求最少硬币数使得总金额为给定值。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 函数声明
int coinChange(std::vector<int>& coins, int amount);int main() {std::vector<int> coins = {1, 2, 5};int amount = 11;std::cout << "最少硬币数: " << coinChange(coins, amount) << std::endl;return 0;
}// 找零问题:求最少硬币数
int coinChange(std::vector<int>& coins, int amount) {// 步骤 1: 对硬币面值从大到小排序std::sort(coins.rbegin(), coins.rend());int count = 0;// 步骤 2: 遍历硬币面值,逐步减少目标金额for (int coin : coins) {while (amount >= coin) {amount -= coin;count++;}}// 步骤 3: 检查是否正好找零成功return amount == 0 ? count : -1;
}

Ref. ![[1000.03.CS.PL.C++.4.2-STL-Algorithms-SortingOperations#1.1 简述]]

Others.

def coin_change(coins, amount):coins.sort(reverse=True)count = 0for coin in coins:while amount >= coin:amount -= coincount += 1return count if amount == 0 else -1# 示例
coins = [1, 2, 5]
amount = 11
print(coin_change(coins, amount))  # 输出: 3 (5 + 5 + 1)

6.2 中等题目:区间调度问题

题目描述:给定多个会议的开始和结束时间,求最多能安排的会议数量。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 会议结构体
struct Meeting {int start;int end;
};// 函数声明
int maxMeetings(std::vector<Meeting>& meetings);int main() {std::vector<Meeting> meetings = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};std::cout << "最多能安排的会议数量: " << maxMeetings(meetings) << std::endl;return 0;
}// 区间调度问题:求最多能安排的会议数量
int maxMeetings(std::vector<Meeting>& meetings) {// 步骤 1: 根据会议结束时间排序std::sort(meetings.begin(), meetings.end(), [](const Meeting& a, const Meeting& b) {return a.end < b.end;});int count = 0;int endTime = 0;// 步骤 2: 遍历会议,选择结束时间最早的会议for (const auto& meeting : meetings) {if (meeting.start >= endTime) {count++;endTime = meeting.end;}}return count;
}

ref.

def max_meetings(meetings):meetings.sort(key=lambda x: x[1])count = 0end_time = 0for meeting in meetings:if meeting[0] >= end_time:count += 1end_time = meeting[1]return count# 示例
meetings = [(1, 2), (3, 4), (0, 6), (5, 7), (8, 9), (5, 9)]
print(max_meetings(meetings))  # 输出: 4

6.3 困难题目:分数背包问题

题目描述:给定物品的重量和价值,求在背包容量限制下的最大价值,物品可以分割。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 物品结构体
struct Item {double value;double weight;
};// 函数声明
double fractionalKnapsack(std::vector<Item>& items, double capacity);int main() {std::vector<Item> items = {{60, 10}, {100, 20}, {120, 30}};double capacity = 50;std::cout << "背包的最大价值: " << fractionalKnapsack(items, capacity) << std::endl;return 0;
}// 分数背包问题:求在背包容量限制下的最大价值
double fractionalKnapsack(std::vector<Item>& items, double capacity) {// 步骤 1: 根据物品单位重量价值排序std::sort(items.begin(), items.end(), [](const Item& a, const Item& b) {return (a.value / a.weight) > (b.value / b.weight);});double totalValue = 0;// 步骤 2: 遍历物品,选择单位重量价值最高的物品for (const auto& item : items) {if (capacity >= item.weight) {capacity -= item.weight;totalValue += item.value;} else {totalValue += item.value * (capacity / item.weight);break;}}return totalValue;
}

ref.

def fractional_knapsack(values, weights, capacity):items = list(zip(values, weights))items.sort(key=lambda x: x[0] / x[1], reverse=True)total_value = 0for value, weight in items:if capacity >= weight:capacity -= weighttotal_value += valueelse:total_value += value * (capacity / weight)breakreturn total_value# 示例
values = [60, 100, 120]
weights = [10, 20, 30]
capacity = 50
print(fractional_knapsack(values, weights, capacity))  # 输出: 240.0

7. 题目和思路表格

序号题目题目描述贪心策略代码实现
1找零问题求最少硬币数使得总金额为给定值每次选择面值最大的硬币代码
2区间调度问题求最多能安排的会议数量每次选择结束时间最早的会议代码
3分数背包问题求在背包容量限制下的最大价值每次选择单位重量价值最高的物品代码
4最小生成树用于求解图中的最小生成树每次选择权重最小的边-
5霍夫曼编码用于数据压缩每次选择频率最低的节点进行合并-
6最短路径用于求解图中的最短路径每次选择当前节点到未访问节点的最短路径-
7活动选择问题求最多可选择的互不相交的活动每次选择结束时间最早的活动-
8跳跃游戏判断能否跳到最后一个位置每次选择跳跃距离最大的步骤-
9加油站问题求最少加油次数到达目的地每次选择油量最多的加油站-
10股票买卖求最大收益每次选择局部最低点买入,局部最高点卖出-

8. 总结

贪心算法是一种简单而高效的算法策略,在解决满足贪心选择性质的问题时,能够得到较好的结果。然而,要注意贪心算法的局限性,它不适用于所有问题,有些问题需要考虑其他算法设计策略,如分治、动态规划等。因此,在实际应用中,需要根据问题的性质和要求选择合适的算法策略。通过理解和掌握上述贪心算法的例子和思路,能够有效地提升解决问题的能力。

References

这篇关于【CS.AL】算法核心之贪心算法:从入门到进阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065334

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig