数据结构篇:旋转操作在AVL树中的实现过程

2024-06-16 02:52

本文主要是介绍数据结构篇:旋转操作在AVL树中的实现过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节课在线学习视频(网盘地址,保存后即可免费观看):

https://pan.quark.cn/s/06d5ed47e33b

AVL树是平衡二叉搜索树的一种,它通过旋转操作来保持树的平衡。AVL树的特点是,任何节点的两个子树的高度最大差别为1。本文将详细介绍AVL树中的旋转操作及其实现过程,并通过多个代码案例来说明这些操作的应用。

1. AVL树的基本概念

AVL树是一种自平衡二叉搜索树,其核心思想是通过旋转操作来维持树的平衡。旋转操作有四种:左旋、右旋、左右旋和右左旋。旋转操作的目的是调整树的结构,使其保持平衡,从而保证二叉搜索树的性能。

平衡因子

平衡因子是指某个节点的左子树高度减去右子树高度的值。AVL树的每个节点的平衡因子只能是-1、0或1。

2. 旋转操作

2.1 右旋(Right Rotation)

右旋是对某个节点进行的单次旋转,使得该节点的左子树成为其父节点。

案例1:右旋操作
class AVLNode {int val;int height;AVLNode left;AVLNode right;AVLNode(int val) {this.val = val;this.height = 1;}
}public class AVLTree {private int height(AVLNode node) {if (node == null) return 0;return node.height;}private AVLNode rightRotate(AVLNode y) {AVLNode x = y.left;AVLNode T2 = x.right;x.right = y;y.left = T2;y.height = Math.max(height(y.left), height(y.right)) + 1;x.height = Math.max(height(x.left), height(x.right)) + 1;return x;}public static void main(String[] args) {AVLTree tree = new AVLTree();AVLNode root = new AVLNode(30);root.left = new AVLNode(20);root.left.left = new AVLNode(10);root = tree.rightRotate(root);System.out.println("After right rotation, root is: " + root.val);}
}

在这个例子中,我们对根节点进行了右旋操作,使其左子树成为新的根节点。

2.2 左旋(Left Rotation)

左旋是对某个节点进行的单次旋转,使得该节点的右子树成为其父节点。

案例2:左旋操作
class AVLTree {// 同上private AVLNode leftRotate(AVLNode x) {AVLNode y = x.right;AVLNode T2 = y.left;y.left = x;x.right = T2;x.height = Math.max(height(x.left), height(x.right)) + 1;y.height = Math.max(height(y.left), height(y.right)) + 1;return y;}public static void main(String[] args) {AVLTree tree = new AVLTree();AVLNode root = new AVLNode(10);root.right = new AVLNode(20);root.right.right = new AVLNode(30);root = tree.leftRotate(root);System.out.println("After left rotation, root is: " + root.val);}
}

在这个例子中,我们对根节点进行了左旋操作,使其右子树成为新的根节点。

2.3 左右旋(Left-Right Rotation)

左右旋是对某个节点进行的两次旋转:先对其左子树进行左旋,再对该节点进行右旋。

案例3:左右旋操作
class AVLTree {// 同上private AVLNode leftRightRotate(AVLNode node) {node.left = leftRotate(node.left);return rightRotate(node);}public static void main(String[] args) {AVLTree tree = new AVLTree();AVLNode root = new AVLNode(30);root.left = new AVLNode(10);root.left.right = new AVLNode(20);root = tree.leftRightRotate(root);System.out.println("After left-right rotation, root is: " + root.val);}
}

在这个例子中,我们对根节点进行了左右旋操作,先对其左子树进行左旋,再对根节点进行右旋。

2.4 右左旋(Right-Left Rotation)

右左旋是对某个节点进行的两次旋转:先对其右子树进行右旋,再对该节点进行左旋。

案例4:右左旋操作
class AVLTree {// 同上private AVLNode rightLeftRotate(AVLNode node) {node.right = rightRotate(node.right);return leftRotate(node);}public static void main(String[] args) {AVLTree tree = new AVLTree();AVLNode root = new AVLNode(10);root.right = new AVLNode(30);root.right.left = new AVLNode(20);root = tree.rightLeftRotate(root);System.out.println("After right-left rotation, root is: " + root.val);}
}

在这个例子中,我们对根节点进行了右左旋操作,先对其右子树进行右旋,再对根节点进行左旋。

3. AVL树的插入操作

AVL树的插入操作需要在插入新节点后,检查节点的平衡因子,并根据平衡因子进行相应的旋转操作,以保持树的平衡。

案例5:AVL树的插入操作
public class AVLTree {// 同上private int balanceFactor(AVLNode node) {if (node == null) return 0;return height(node.left) - height(node.right);}public AVLNode insert(AVLNode node, int val) {if (node == null) return new AVLNode(val);if (val < node.val) node.left = insert(node.left, val);else if (val > node.val) node.right = insert(node.right, val);else return node;node.height = 1 + Math.max(height(node.left), height(node.right));int balance = balanceFactor(node);if (balance > 1 && val < node.left.val) return rightRotate(node);if (balance < -1 && val > node.right.val) return leftRotate(node);if (balance > 1 && val > node.left.val) {node.left = leftRotate(node.left);return rightRotate(node);}if (balance < -1 && val < node.right.val) {node.right = rightRotate(node.right);return leftRotate(node);}return node;}public static void main(String[] args) {AVLTree tree = new AVLTree();AVLNode root = null;int[] values = {10, 20, 30, 40, 50, 25};for (int val : values) {root = tree.insert(root, val);}System.out.println("AVL Tree constructed successfully.");}
}

在这个例子中,我们实现了AVL树的插入操作。每次插入新节点后,我们检查平衡因子,并通过旋转操作保持树的平衡。

4. 注意事项

  • 在进行旋转操作时,需要同时更新节点的高度和子树的高度。
  • 插入和删除操作可能会导致多个节点的平衡因子变化,需要从插入或删除位置向上逐层检查和调整。
  • 在实现AVL树时,确保所有旋转操作的逻辑正确,以避免树的不平衡或错误的结构。

结语

本文详细介绍了AVL树中的旋转操作及其实现过程,包括右旋、左旋、左右旋和右左旋。通过多个代码案例,我们展示了这些旋转操作的应用和效果。在实际开发中,AVL树通过旋转操作保持平衡,从而保证二叉搜索树的高效性能。希望这些示例和注意事项能帮助你更好地理解和应用AVL树中的旋转操作。

这篇关于数据结构篇:旋转操作在AVL树中的实现过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065293

相关文章

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘