poj 1091 跳蚤(不定方程+容斥)

2024-06-15 19:32

本文主要是介绍poj 1091 跳蚤(不定方程+容斥),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

跳蚤
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 8731 Accepted: 2605

Description

Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。 
比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。 
当确定N和M后,显然一共有M^N张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。 

Input

两个整数N和M(N <= 15 , M <= 100000000)。

Output

可以完成任务的卡片数。

Sample Input

2 4

Sample Output

12

Hint

这12张卡片分别是: 
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4), 
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4) 

a1*x1+a2*x2+a3*x3+……+anxn+M*x(n+1)=1

(a1,a2,a3,……,an,M)=1 排除公因子非1的情况 总共的情况数是M^n

a1-an都是小于等于M  

初始化出M范围内所有的素因子 枚举所有范围内的素因子

例如 有素因子2  所以M内有M/2个数有2这个素因子  有素因子3 所以M内有M/3个数有3这个素因子

所以重复计算了6这个因子 多算了M/6个数 诸如此类。。。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 10010
#define MAXM 100010
#define INF 99999999
#define ll long long
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)using namespace std;ll Read()
{char ch;ll a = 0;while((ch = getchar()) == ' ' | ch == '\n');a += ch - '0';while((ch = getchar()) != ' ' && ch != '\n'){a *= 10;a += ch - '0';}return a;
}void Prll(ll a)    //输出外挂
{if(a>9)Prll(a/10);putchar(a%10+'0');
}
ll p[200],tot;
ll ans,tmp;
ll a[200],m,n;
void divide(ll x)
{tot=0;for(ll i=2;i*i<=x;i++){if(x%i==0){tot++;p[tot]=i;while(x%i==0)x/=i;}}if(x!=1){tot++;p[tot]=x;}
}
ll mult(ll a,ll b)
{ll x=1;while(b){x*=a;b--;}return x;
}void dfs(ll x,ll cnt,ll c)//共有c个公共因子
{if(cnt==c){ll num=m;for(ll i=1;i<=c;i++)num/=a[i];tmp+=mult(num,n);return;}for(ll i=x+1;i<=tot;i++){a[cnt+1]=p[i];dfs(i,cnt+1,c);}
}int main()
{//fread;while(scanf("%lld%lld",&n,&m)!=EOF){ans=tot=0;divide(m);for(ll i=1;i<=tot;i++){tmp=0;dfs(0,0,i);if(i&1)ans+=tmp;else ans-=tmp;}ans=mult(m,n)-ans;printf("%lld\n",ans);}return 0;
}




这篇关于poj 1091 跳蚤(不定方程+容斥)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064374

相关文章

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一