贪心+偏序定理 poj1065+poj3636

2024-06-15 19:18

本文主要是介绍贪心+偏序定理 poj1065+poj3636,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

所谓的偏序定理 说的就是 Dilworth定理


      给定n个二元组(x, y),问存在最少多少个划分使得每个划分里面的二元组都满足x1 <= x2并且y1 <= y2。
  如果定义x1 <= x2 && y1 <= y2为偏序关系的话,那么问题就转化成求这个集合的链的最少划分数。可以通过找最长反链长度来解决,这里的反链关系是x1 > x2 || y1 > y2。如果把n个二元组按照x递增排序,相同的x按照y递增排序,那么我们只需对y找到一个最长递减子序列就是所求的答案,复杂度O(nlogn)。对于相同的x之所以按照y递增排序是因为这里偏序关系带等号,这样相同的x其实可以划分到一起,把y按照递增排序就可以使得相同的x最多只选择一个y。
  还有的题目要求满足x1 < x2 && y1 < y2,这就需要把偏序关系相应修改。修改之后对于相同的x,每一个都会被划分到不同的集合(因为相等是不满足偏序关系的),所以这里的排序关系要改一下,x相同的y要按照降序排列,这样求一个最长不递增子序列就是答案,y递减保证可能会有多个x相同的二元组选入到结果中。

poj 1065 


Language:
Wooden Sticks
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 19174 Accepted: 8082

Description

There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows: 
(a) The setup time for the first wooden stick is 1 minute. 
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup. 
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1 <= n <= 5000 , that represents the number of wooden sticks in the test case, and the second line contains 2n positive integers l1 , w1 , l2 , w2 ,..., ln , wn , each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.

Output

The output should contain the minimum setup time in minutes, one per line.

Sample Input

3 
5 
4 9 5 2 2 1 3 5 1 4 
3 
2 2 1 1 2 2 
3 
1 3 2 2 3 1 

Sample Output

2
1
3


题意不再赘述

木棍的重量和长度只要满足>= 就可以了 所以我们定义排序规则 重量和长度都是按升序排列

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 5010
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)using namespace std;int Read()
{char c = getchar();while (c < '0' | c > '9') c = getchar();int x = 0;while (c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}return x;
}void Print(int a)
{if(a>9)Print(a/10);putchar(a%10+'0');
}struct node
{int l,w;void input(){scanf("%d%d",&l,&w);}bool operator<(const node& p)const{if(l==p.l) return w<p.w;else return l<p.l;}
}no[MAXN];int vis[MAXN];int main()
{
//    fread;int tc;scanf("%d",&tc);int n;while(tc--){scanf("%d",&n);for(int i=0;i<n;i++)no[i].input();sort(no,no+n);
//        for(int i=0;i<n;i++)
//            cout<<no[i].l<<" "<<no[i].w<<endl;MEM(vis,0);int ans=0;for(int i=0;i<n;i++){if(vis[i])continue;vis[i]=1;node p;p.l=no[i].l; p.w=no[i].w;for(int j=i+1;j<n;j++){if(vis[j]) continue;if(no[j].l>=p.l&&no[j].w>=p.w){vis[j]=1;p.l=no[j].l; p.w=no[j].w;}}ans++;}printf("%d\n",ans);}return 0;
}

poj 3636

Language:
Nested Dolls
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7907 Accepted: 2146

Description

Dilworth is the world's most prominent collector of Russian nested dolls: he literally has thousands of them! You know, the wooden hollow dolls of different sizes of which the smallest doll is contained in the second smallest, and this doll is in turn contained in the next one and so forth. One day he wonders if there is another way of nesting them so he will end up with fewer nested dolls? After all, that would make his collection even more magnificent! He unpacks each nested doll and measures the width and height of each contained doll. A doll with width w1 and height h1 will fit in another doll of width w2 and heighth= if and only if w1 < w2 and h1 < h2. Can you help him calculate the smallest number of nested dolls possible to assemble from his massive list of measurements?

Input

On the first line of input is a single positive integer 1 ≤ t ≤ 20 specifying the number of test cases to follow. Each test case begins with a positive integer 1 ≤ m ≤ 20000 on a line of itself telling the number of dolls in the test case. Next follow 2m positive integers w1h1,w2h2, ... ,wmhm, where wi is the width and hi is the height of doll number i. 1 ≤ wihi ≤ 10000 for all i.

Output

For each test case there should be one line of output containing the minimum number of nested dolls possible.

Sample Input

4
3
20 30 40 50 30 40
4
20 30 10 10 30 20 40 50
3
10 30 20 20 30 10
4
10 10 20 30 40 50 39 51

Sample Output

1
2
3
2


这题题意与上题类似 最大不同就是  宽度和高度必须要是大于才是满足的  

所以我们定义排序规则 宽度按升序 高度按降序  这样才会保证在宽度相同时 不会出现覆盖的情况

另外 这道题的数据比较大 我们可以记录每一个套娃最外面的宽度和高度 

如果无法把枚举的套娃覆盖在之前的套娃上 那么就要多放一个。。。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 20010
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)using namespace std;int Read()
{char c = getchar();while (c < '0' | c > '9') c = getchar();int x = 0;while (c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}return x;
}void Print(int a)
{if(a>9)Print(a/10);putchar(a%10+'0');
}struct node
{int w,h;void input(){scanf("%d%d",&w,&h);}bool operator<(const node &p)const{if(w==p.w) return h>p.h;else return w<p.w;}
}no[MAXN];
node e[MAXN];int main()
{
//    fread;int tc;scanf("%d",&tc);while(tc--){int n;scanf("%d",&n);for(int i=0;i<n;i++)no[i].input();sort(no,no+n);int ans=0;for(int i=0;i<n;i++){int flag=0;for(int j=0;j<ans;j++){if(no[i].w>e[j].w&&no[i].h>e[j].h){flag=1;e[j]=no[i];break;}}if(!flag)e[ans++]=no[i];}printf("%d\n",ans);}return 0;
}



这篇关于贪心+偏序定理 poj1065+poj3636的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064339

相关文章

usaco 1.3 Barn Repair(贪心)

思路:用上M块木板时有 M-1 个间隙。目标是让总间隙最大。将相邻两个有牛的牛棚之间间隔的牛棚数排序,选取最大的M-1个作为间隙,其余地方用木板盖住。 做法: 1.若,板(M) 的数目大于或等于 牛棚中有牛的数目(C),则 目测 给每个牛牛发一个板就为最小的需求~ 2.否则,先对 牛牛们的门牌号排序,然后 用一个数组 blank[ ] 记录两门牌号之间的距离,然后 用数组 an

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

poj 3190 优先队列+贪心

题意: 有n头牛,分别给他们挤奶的时间。 然后每头牛挤奶的时候都要在一个stall里面,并且每个stall每次只能占用一头牛。 问最少需要多少个stall,并输出每头牛所在的stall。 e.g 样例: INPUT: 51 102 43 65 84 7 OUTPUT: 412324 HINT: Explanation of the s

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

POJ2010 贪心优先队列

c头牛,需要选n头(奇数);学校总共有f的资金, 每头牛分数score和学费cost,问合法招生方案中,中间分数(即排名第(n+1)/2)最高的是多少。 n头牛按照先score后cost从小到大排序; 枚举中间score的牛,  预处理左边与右边的最小花费和。 预处理直接优先队列贪心 public class Main {public static voi

ural 1820. Ural Steaks 贪心

1820. Ural Steaks Time limit: 0.5 second Memory limit: 64 MB After the personal contest, happy but hungry programmers dropped into the restaurant “Ural Steaks” and ordered  n specialty steaks

ural 1014. Product of Digits贪心

1014. Product of Digits Time limit: 1.0 second Memory limit: 64 MB Your task is to find the minimal positive integer number  Q so that the product of digits of  Q is exactly equal to  N. Inpu

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数

Java验证辛钦大数定理

本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。   实验环境: 本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。   一,验证辛钦大数定理 由辛钦大数定理描述为: 辛钦大数定理(弱大数定理)  设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,

BUYING FEED(贪心+树状动态规划)

BUYING FEED 时间限制: 3000 ms  |  内存限制: 65535 KB 难度:4 描述 Farmer John needs to travel to town to pick up K (1 <= K <= 100)pounds of feed. Driving D miles with K pounds of feed in his truck costs D