半导体笔记汇总

2024-06-15 12:12
文章标签 笔记 汇总 半导体

本文主要是介绍半导体笔记汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

半导体笔记汇总

介于导体与绝缘体之间的材质就叫做半导体。半导体器件主要分三类:二极管、三极管、MOS管。

一、半导体理论基础

1、导体、半导体和绝缘体

我们根据物质的导电性能强弱将物质分为导体、半导体和绝缘体。电导率与电阻率互为倒数,下图中给出了一些常见物质的电阻率。
在这里插入图片描述
电阻率在 1 0 8 10^8 108以上的是绝缘体,电阻率在 1 0 8 10^8 108 1 0 − 3 10^{-3} 103之间的是半导体,电阻率在 1 0 − 3 10^{-3} 103以下的是导体。

2、能带理论

导体中导带或者是被部分填充,或者是与价带重叠,在其中不存在禁带,会使得部分填充的导带最上面的电子或者价带顶的电子在获得动能时(例如加上外加电场通电)可以发生跃迁到附近的空能级,电子容易产生移动,产生电流,即可导电。

半导体中的原子键结合强度适中,容易被破裂形成自由电子和自由空穴,禁带宽度比绝缘体小,部分电子跃迁到导带并在价带留下空穴,外加电场时,导带的电子和价带的空穴将获得动能,形成电流,即一定条件下可以导电。

绝缘体的价电子与近邻原子形成强键,键难以打破,因此没有电子参与导电过程。能带图上表现为大的禁带宽度,价带内被电子填满,导带内能级全空,价带顶的电子无法通过外加电场激发到导带,无法形成电流,即不导电。
在这里插入图片描述

3.半导体三大基本特征

半导体的热敏性(temperature sensitive):环境温度升高时,半导体的导电能力大幅增强,制成的热敏电阻可以用于温度控制。

半导体的光敏性(light sensitive):当半导体收到光照时,导电能力大幅增强,制成的光敏二极管可以用于光敏控制。

半导体的掺杂性(doping impuritive):在半导体中掺入一定浓度的杂质后,可改变半导体的导电类型,导电能力也会大幅度增加,利用这种特性可以制造出不同用途的半导体晶体管与集成电路。

二、本征半导体

1.导体、绝缘体与半导体

  • 导体–银、铜、铁、铝等金属元素,其最外层电子在外电场作用下很容易产生定向移动,形成电流。
  • 绝缘体–皮革、干燥的木头、惰性气体、橡胶等材料,其原子的最外层电子受原子核的束缚力很强,一般强度的电场,不会形成电流(或者非常微弱),只有在外电场强到一定程度时才可能导电。
  • 半导体–硅(Si)、锗(Ge)等材料,均为四价元素,它们原子的最外层电子受原子核的束缚力介于导体与绝缘体之间。

2.本征半导体

本征半导体–是指完全不含杂质且无晶格缺陷的纯净半导体,一般是指其导电能力主要由材料的本征激发决定的纯净半导体。它在物理结构上有多晶体和单晶体两种形态,制造半导体器件必须使用单晶体(材料的纯度要达到99.9999999,常称为“九个9”).单晶体不但纯度高,在晶格结构上也是没有缺陷的,用这样的单晶体制造的器件才能保证质量。
典型的本征半导体有硅(Si)、锗(Ge)及砷化镓(GaAs)等。特点:纯净、无杂质(不掺杂);结构稳定。

3.本征半导体的结构

原子之间形成共价键结构。但是共价键中的电子并不像绝缘体中的电子结合的那样紧,由于能量激发(如光照、温度变化),一些电子就能挣脱原有的束缚而成为自由电子。与此同时,某处共价键中失去一个电子,相应地就留下一个空位,成为空穴。自由电子和空穴总是成对出现的。

一定温度下,自由电子与空穴对的浓度一定,能够达到动态平衡;温度升高,热运动加剧,挣脱共价键的电子增多,自由电子与空穴对的浓度加大,达到新的平衡。

4.本征半导体中的两种载流子:自由电子和空穴

载流子:是指运载电荷的粒子。两种载流子:自由电子和空穴。

当给本征半导体材料外加电场时,带负电的自由电子和带正电的空穴均参与导电,且运动方向相反。由于载流子数目很少,故导电性很差。

5.杂质(N型和P型)半导体

在本征半导体材料中,加入其他价元素,也就是掺杂。

N型半导体是电子型半导体。

“N”表示负电的意思,取自英文Negative的第一个字母。

在四价的本征半导体材料中掺入五价的磷、砷、锑。自由电子成为多数载流子。N型半导体主要依靠自由电子导电。

由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

6.P型半导体 空穴型半导体

以带正电的空穴导电为主的半导体。“P”表示正点的意思,取自英文Positive的第一个字母。

在四价的本征半导体材料中掺入三价的硼(B)。空穴成为多数载流子。P型半导体主要依靠空穴导电。

由于P型半导体中正电荷与负电荷相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

杂质半导体主要靠多数载流子导电。掺入杂志越多,多子浓度越高,导电性越强,实现导电性可控。

7.载流子

在杂质半导体中,温度变化时,载流子的数目变化吗?少子与多子变化的数目相同吗?少子与多子浓度的变化相同吗?

随着温度升高,热运动加剧,载流子浓度增大,材料的导电性增强。载流子密度会随温度变化而变化,导致电学性能变化。少子浓度受温度影响变化倍数更多,例如本身100电子1空穴,增加1电子1空穴,电子浓度几乎不变,空穴浓度翻倍了。

这篇关于半导体笔记汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063421

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个

Git 的特点—— Git 学习笔记 02

文章目录 Git 简史Git 的特点直接记录快照,而非差异比较近乎所有操作都是本地执行保证完整性一般只添加数据 参考资料 Git 简史 众所周知,Linux 内核开源项目有着为数众多的参与者。这么多人在世界各地为 Linux 编写代码,那Linux 的代码是如何管理的呢?事实是在 2002 年以前,世界各地的开发者把源代码通过 diff 的方式发给 Linus,然后由 Linus