Caffe傻瓜系列(1) 数据层理解

2024-06-15 09:38

本文主要是介绍Caffe傻瓜系列(1) 数据层理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转自:https://blog.csdn.net/langb2014/article/details/50456440

本系列大部分为转载,根据自己需求改写训练文件,大体流程相同。

要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。

层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。

今天我们就先介绍一下数据层.

数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blobs转换成别的格式进行保存输出。通常数据的预处理(如减去均值, 放大缩小, 裁剪和镜像等),也在这一层设置参数实现。

数据来源可以来自高效的数据库(如LevelDB和LMDB),也可以直接来自于内存。如果不是很注重效率的话,数据也可来自磁盘的hdf5文件和图片格式文件。

所有的数据层的都具有的公用参数:先看示例

  1. layer {
  2. name: “cifar”
  3. type: “Data”
  4. top: “data”
  5. top: “label”
  6. include {
  7. phase: TRAIN
  8. }
  9. transform_param {
  10. mean_file: “examples/cifar10/mean.binaryproto”
  11. }
  12. data_param {
  13. source: “examples/cifar10/cifar10_train_lmdb”
  14. batch_size: 100
  15. backend: LMDB
  16. }
  17. }
name: 表示该层的名称,可随意取

type: 层类型,如果是Data,表示数据来源于LevelDB或LMDB。根据数据的来源不同,数据层的类型也不同(后面会详细阐述)。一般在练习的时候,我们都是采用的LevelDB或LMDB数据,因此层类型设置为Data。

top或bottom: 每一层用bottom来输入数据,用top来输出数据。如果只有top没有bottom,则此层只有输出,没有输入。反之亦然。如果有多个 top或多个bottom,表示有多个blobs数据的输入和输出。

data 与 label: 在数据层中,至少有一个命名为data的top。如果有第二个top,一般命名为label。 这种(data,label)配对是分类模型所必需的。

include: 一般训练的时候和测试的时候,模型的层是不一样的。该层(layer)是属于训练阶段的层,还是属于测试阶段的层,需要用include来指定。如果没有include参数,则表示该层既在训练模型中,又在测试模型中。

Transformations: 数据的预处理,可以将数据变换到定义的范围内。如设置scale为0.00390625,实际上就是1/255, 即将输入数据由0-255归一化到0-1之间

其它的数据预处理也在这个地方设置:

  1. transform_param {
  2. scale: 0.00390625
  3. mean_file_size: "examples/cifar10/mean.binaryproto"
  4. # 用一个配置文件来进行均值操作
  5. mirror: 1 # 1表示开启镜像,0表示关闭,也可用ture和false来表示
  6. # 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
  7. crop_size: 227
  8. }

后面的data_param部分,就是根据数据的来源不同,来进行不同的设置。

1、数据来自于数据库(如LevelDB和LMDB)

  层类型(layer type):Data

必须设置的参数:

  source: 包含数据库的目录名称,如examples/mnist/mnist_train_lmdb

  batch_size: 每次处理的数据个数,如64

可选的参数:

  rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

  backend: 选择是采用LevelDB还是LMDB, 默认是LevelDB.

示例:

  1. layer {
  2. name: "mnist"
  3. type: "Data"
  4. top: "data"
  5. top: "label"
  6. include {
  7. phase: TRAIN
  8. }
  9. transform_param {
  10. scale: 0.00390625
  11. }
  12. data_param {
  13. source: "examples/mnist/mnist_train_lmdb"
  14. batch_size: 64
  15. backend: LMDB
  16. }
  17. }

2、数据来自于内存

层类型:MemoryData

必须设置的参数:

 batch_size:每一次处理的数据个数,比如2

 channels:通道数

  height:高度

   width: 宽度

示例:

  1. layer {
  2. top: "data"
  3. top: "label"
  4. name: "memory_data"
  5. type: "MemoryData"
  6. memory_data_param{
  7. batch_size: 2
  8. height: 100
  9. width: 100
  10. channels: 1
  11. }
  12. transform_param {
  13. scale: 0.0078125
  14. mean_file: "mean.proto"
  15. mirror: false
  16. }
  17. }
3、数据来自于HDF5

层类型:HDF5Data

必须设置的参数:

source: 读取的文件名称

batch_size: 每一次处理的数据个数

示例:

  1. layer {
  2. name: "data"
  3. type: "HDF5Data"
  4. top: "data"
  5. top: "label"
  6. hdf5_data_param {
  7. source: "examples/hdf5_classification/data/train.txt"
  8. batch_size: 10
  9. }
  10. }

4、数据来自于图片

层类型:ImageData

必须设置的参数:

  source: 一个文本文件的名字,每一行给定一个图片文件的名称和标签(label)

  batch_size: 每一次处理的数据个数,即图片数

可选参数:

  rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

  shuffle: 随机打乱顺序,默认值为false

  new_height,new_width: 如果设置,则将图片进行resize

 示例:

  1. layer {
  2. name: "data"
  3. type: "ImageData"
  4. top: "data"
  5. top: "label"
  6. transform_param {
  7. mirror: false
  8. crop_size: 227
  9. mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  10. }
  11. image_data_param {
  12. source: "examples/_temp/file_list.txt"
  13. batch_size: 50
  14. new_height: 256
  15. new_width: 256
  16. }
  17. }

5、数据来源于Windows

层类型:WindowData

必须设置的参数:

  source: 一个文本文件的名字

  batch_size: 每一次处理的数据个数,即图片数

示例:

  1. layer {
  2. name: "data"
  3. type: "WindowData"
  4. top: "data"
  5. top: "label"
  6. include {
  7. phase: TRAIN
  8. }
  9. transform_param {
  10. mirror: true
  11. crop_size: 227
  12. mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  13. }
  14. window_data_param {
  15. source: "examples/finetune_pascal_detection/window_file_2007_trainval.txt"
  16. batch_size: 128
  17. fg_threshold: 0.5
  18. bg_threshold: 0.5
  19. fg_fraction: 0.25
  20. context_pad: 16
  21. crop_mode: "warp"
  22. }
  23. }





这篇关于Caffe傻瓜系列(1) 数据层理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063092

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl