本文主要是介绍对主从 Redis 进行 QPS 压测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1、对redis读写分离架构进行压测,单实例写QPS+单实例读QPS
-
redis-3.2.8/src
-
./redis-benchmark -h 192.168.31.187
-
-c <clients> Number of parallel connections (default 50) // 并发
-
-n <requests> Total number of requests (default 100000) // 总数
-
-d <size> Data size of SET/GET value in bytes (default 2) // 大小
-
根据你自己的高峰期的访问量,在高峰期,瞬时最大用户量会达到10万+,-c 100000,-n 10000000,-d 50
-
各种基准测试,直接出来
-
1核1G,虚拟机
-
====== PING_INLINE ======
-
100000 requests completed in 1.28 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
99.78% <= 1 milliseconds
-
99.93% <= 2 milliseconds
-
99.97% <= 3 milliseconds
-
100.00% <= 3 milliseconds
-
78308.54 requests per second
-
====== PING_BULK ======
-
100000 requests completed in 1.30 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
99.87% <= 1 milliseconds
-
100.00% <= 1 milliseconds
-
76804.91 requests per second
-
====== SET ======
-
100000 requests completed in 2.50 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
5.95% <= 1 milliseconds
-
99.63% <= 2 milliseconds
-
99.93% <= 3 milliseconds
-
99.99% <= 4 milliseconds
-
100.00% <= 4 milliseconds
-
40032.03 requests per second
-
====== GET ======
-
100000 requests completed in 1.30 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
99.73% <= 1 milliseconds
-
100.00% <= 2 milliseconds
-
100.00% <= 2 milliseconds
-
76628.35 requests per second
-
====== INCR ======
-
100000 requests completed in 1.90 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
80.92% <= 1 milliseconds
-
99.81% <= 2 milliseconds
-
99.95% <= 3 milliseconds
-
99.96% <= 4 milliseconds
-
99.97% <= 5 milliseconds
-
100.00% <= 6 milliseconds
-
52548.61 requests per second
-
====== LPUSH ======
-
100000 requests completed in 2.58 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
3.76% <= 1 milliseconds
-
99.61% <= 2 milliseconds
-
99.93% <= 3 milliseconds
-
100.00% <= 3 milliseconds
-
38684.72 requests per second
-
====== RPUSH ======
-
100000 requests completed in 2.47 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
6.87% <= 1 milliseconds
-
99.69% <= 2 milliseconds
-
99.87% <= 3 milliseconds
-
99.99% <= 4 milliseconds
-
100.00% <= 4 milliseconds
-
40469.45 requests per second
-
====== LPOP ======
-
100000 requests completed in 2.26 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
28.39% <= 1 milliseconds
-
99.83% <= 2 milliseconds
-
100.00% <= 2 milliseconds
-
44306.60 requests per second
-
====== RPOP ======
-
100000 requests completed in 2.18 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
36.08% <= 1 milliseconds
-
99.75% <= 2 milliseconds
-
100.00% <= 2 milliseconds
-
45871.56 requests per second
-
====== SADD ======
-
100000 requests completed in 1.23 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
99.94% <= 1 milliseconds
-
100.00% <= 2 milliseconds
-
100.00% <= 2 milliseconds
-
81168.83 requests per second
-
====== SPOP ======
-
100000 requests completed in 1.28 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
99.80% <= 1 milliseconds
-
99.96% <= 2 milliseconds
-
99.96% <= 3 milliseconds
-
99.97% <= 5 milliseconds
-
100.00% <= 5 milliseconds
-
78369.91 requests per second
-
====== LPUSH (needed to benchmark LRANGE) ======
-
100000 requests completed in 2.47 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
15.29% <= 1 milliseconds
-
99.64% <= 2 milliseconds
-
99.94% <= 3 milliseconds
-
100.00% <= 3 milliseconds
-
40420.37 requests per second
-
====== LRANGE_100 (first 100 elements) ======
-
100000 requests completed in 3.69 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
30.86% <= 1 milliseconds
-
96.99% <= 2 milliseconds
-
99.94% <= 3 milliseconds
-
99.99% <= 4 milliseconds
-
100.00% <= 4 milliseconds
-
27085.59 requests per second
-
====== LRANGE_300 (first 300 elements) ======
-
100000 requests completed in 10.22 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
0.03% <= 1 milliseconds
-
5.90% <= 2 milliseconds
-
90.68% <= 3 milliseconds
-
95.46% <= 4 milliseconds
-
97.67% <= 5 milliseconds
-
99.12% <= 6 milliseconds
-
99.98% <= 7 milliseconds
-
100.00% <= 7 milliseconds
-
9784.74 requests per second
-
====== LRANGE_500 (first 450 elements) ======
-
100000 requests completed in 14.71 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
0.00% <= 1 milliseconds
-
0.07% <= 2 milliseconds
-
1.59% <= 3 milliseconds
-
89.26% <= 4 milliseconds
-
97.90% <= 5 milliseconds
-
99.24% <= 6 milliseconds
-
99.73% <= 7 milliseconds
-
99.89% <= 8 milliseconds
-
99.96% <= 9 milliseconds
-
99.99% <= 10 milliseconds
-
100.00% <= 10 milliseconds
-
6799.48 requests per second
-
====== LRANGE_600 (first 600 elements) ======
-
100000 requests completed in 18.56 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
0.00% <= 2 milliseconds
-
0.23% <= 3 milliseconds
-
1.75% <= 4 milliseconds
-
91.17% <= 5 milliseconds
-
98.16% <= 6 milliseconds
-
99.04% <= 7 milliseconds
-
99.83% <= 8 milliseconds
-
99.95% <= 9 milliseconds
-
99.98% <= 10 milliseconds
-
100.00% <= 10 milliseconds
-
5387.35 requests per second
-
====== MSET (10 keys) ======
-
100000 requests completed in 4.02 seconds
-
50 parallel clients
-
3 bytes payload
-
keep alive: 1
-
0.01% <= 1 milliseconds
-
53.22% <= 2 milliseconds
-
99.12% <= 3 milliseconds
-
99.55% <= 4 milliseconds
-
99.70% <= 5 milliseconds
-
99.90% <= 6 milliseconds
-
99.95% <= 7 milliseconds
-
100.00% <= 8 milliseconds
-
24869.44 requests per second
-
我们这个读写分离这一块的第一讲
-
大部分情况下来说,看你的服务器的机器性能和配置,机器越牛逼,配置越高
-
单机上十几万,单机上二十万
-
很多公司里,给一些低配置的服务器,操作复杂度
-
大公司里,都是公司会提供统一的云平台,比如京东、腾讯、BAT、其他的一些、小米、美团
-
虚拟机,低配
-
搭建一些集群,专门为某个项目,搭建的专用集群,4核4G内存,比较复杂的操作,数据比较大
-
几万,单机做到,差不多了
-
redis提供的高并发,至少到上万,没问题
-
几万~十几万/二十万不等
-
QPS,自己不同公司,不同服务器,自己去测试,跟生产环境还有区别
-
生产环境,大量的网络请求的调用,网络本身就有开销,你的redis的吞吐量就不一定那么高了
-
QPS的两个杀手:一个是复杂操作,lrange,挺多的; value很大,2 byte,我之前用redis做大规模的缓存
-
做商品详情页的cache,可能是需要把大串数据,拼接在一起,作为一个json串,大小可能都几k,几个byte
-
2、水平扩容redis读节点,提升度吞吐量
-
就按照上一节课讲解的,再在其他服务器上搭建redis从节点,单个从节点读请QPS在5万左右,两个redis从节点,所有的读请求打到两台机器上去,承载整个集群读QPS在10万+
这篇关于对主从 Redis 进行 QPS 压测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!