HDU5478 Can you find it【同余问题】

2024-06-15 04:48
文章标签 问题 find 同余 hdu5478

本文主要是介绍HDU5478 Can you find it【同余问题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5478


题目大意:

给你一个素数 C(1 <= C <= 2*10^5) 和整数 k1、b1、k2(1 <= k1,k2,b1 <= 10^9)。

找出有多少个(a,b)满足 a^(k1*n+b1) + b^(k2*n-k2+1) ≡ 0(mod C)(n = 1,2,3,…)

如果找不到则输出 -1。


解题思路:

先来看同余的几个基本定理。

1. a ≡ b(mod m),当且仅当 m | (a-b)。

2. a ≡ b(mod m),当且仅当存在整数 k,使得 a = b + k*m。

3. 同余关系是等价关系,即

(1) 自反性:a ≡ a(mod m)。

(2) 对称性:若 a ≡ b(mod m),则 b ≡ a(mod m)。

(3) 传递性:若 a ≡ b(mod m),b ≡ c(mod m),则 a ≡ c(mod m)。

4. 若 a,b,c 是整数,m 是正整数,且 a ≡ b(mod m),则

(1) a + c ≡ b + c(mod m);

(2) a - c ≡ b - c(mod m);

(3) a*c ≡ b*c(mod m);

5. 设 a,b,c,d 为整数,m 为正整数,若 a ≡ b(mod m),c ≡ d(mod m),则

(1) a*x + c*y ≡ b*x + d*y(mod m)

(2) a*c ≡ b*d(mod m),即同余式可以相乘;

(3) a^n ≡ b^n(mod m),其中 n > 0;

(4) f(a) ≡ f(b)(mod m),其中 f(x) 为任一整数系数多项式。

6. 设 a,b,c,d 为整数,m 为正整数,则

(1) 若 a ≡ b(mod m),且 d | m,则 a ≡ b(mod d);

(2) 若 a ≡ b(mod m),则 gcd(a,m)  = gcd(b,m);  

(3) a ≡ b(mod mi)(1 <= i <= n)同时成立,当且仅当 a ≡ b(mod [m1,m2,…,mn])。

7. 若 a*c ≡ b*c(mod m),且 gcd(c,m) = d,则 a ≡ b(mod m/d)。

再看这倒题:

因为恒等式要对所有的 n(正整数)成立,所以要让式子变为对 n 无关的样子。

a^(k1*n+b1) + b^(k2*n-k2+1) ≡ 0(mod C)  

a^(k1*n+b1) ≡ -1*b^(k2*n-k2+1)(mod C)  定理4(2)

a^(k1*n+b1) ≡ (C-1)*b^(k2*n-k2+1)(mod C) 

a^(k1*n)*a^b1 ≡ b^(k2*n)*(C-1)*b^(1-k2)(mod C)

a^b1 * b^(k2-1) / (C-1) ≡ (b^k2 / a^k1)^n(mod C) 定理7

这样来看,只有右边等式为 1,才能使无论 n 为多少,式子都恒成立,所以可以得到两个

式子:

a^b1 * b^(k2-1) ≡ (C-1)(mod C)

a^k1 = b^k2

在原式 a^(k1*n+b1) + b^(k2*n-k2+1) ≡ 0(mod C) 中,n = 1 时,a^(k1+b1) + b = 0,

则对于确定的 a,对应的 b 只有一个,那么现在枚举 a,然后计算出 b,再去判断 (a,b)是

否满足上述两式。


AC代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define LL __int64
using namespace std;
const int MAXN = 200100;LL C,k1,k2,b1;
LL QuickPow(LL a,LL b)
{LL ans = 1;while(b){if(b & 1)ans = ans*a % C;a = a*a % C;b >>= 1;}return ans;
}bool Judge(LL a,LL b)
{return QuickPow(a,k1) == QuickPow(b,k2) && 1LL*QuickPow(a,b1)*QuickPow(b,k2-1)%C == C-1;
}
int main()
{int kase = 0;while(~scanf("%I64d%64d%64d%64d",&C,&k1,&b1,&k2)){printf("Case #%d:\n",++kase);bool flag = false;for(LL i = 1; i < C; ++i){LL b = C - QuickPow(i,k1+b1);if(Judge(i,b)){flag = true;printf("%I64d %I64d\n",i,b);}}if(!flag)printf("-1\n");}return 0;
}


这篇关于HDU5478 Can you find it【同余问题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062462

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

vscode中文乱码问题,注释,终端,调试乱码一劳永逸版

忘记咋回事突然出现了乱码问题,很多方法都试了,注释乱码解决了,终端又乱码,调试窗口也乱码,最后经过本人不懈努力,终于全部解决了,现在分享给大家我的方法。 乱码的原因是各个地方用的编码格式不统一,所以把他们设成统一的utf8. 1.电脑的编码格式 开始-设置-时间和语言-语言和区域 管理语言设置-更改系统区域设置-勾选Bata版:使用utf8-确定-然后按指示重启 2.vscode

Android Environment 获取的路径问题

1. 以获取 /System 路径为例 /*** Return root of the "system" partition holding the core Android OS.* Always present and mounted read-only.*/public static @NonNull File getRootDirectory() {return DIR_ANDR

form表单提交编码的问题

浏览器在form提交后,会生成一个HTTP的头部信息"content-type",标准规定其形式为Content-type: application/x-www-form-urlencoded; charset=UTF-8        那么我们如果需要修改编码,不使用默认的,那么可以如下这样操作修改编码,来满足需求: hmtl代码:   <meta http-equiv="Conte