数学-三分-讲解

2024-06-15 04:18
文章标签 讲解 数学 三分

本文主要是介绍数学-三分-讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:http://hi.baidu.com/vfxupdpaipbcpuq/item/81b21d1910ea729c99ce33db


       二分法作为分治中最常见的方法,适用于单调函数,逼近求解某点的值。但当函数是凸性函数时,二分法就无法适用,这时三分法就可以“大显身手”~~


       如图,类似二分的定义Left和Right,mid = (Left + Right) / 2,midmid = (mid + Right) / 2; 如果mid靠近极值点,则Right = midmid;否则(即midmid靠近极值点),则Left = mid;

程序模版如下:

double Calc(Type a)
{
    /* 根据题目的意思计算 */
}

void Solve(void)
{
    double Left, Right;
    double mid, midmid;
    double mid_value, midmid_value;
    Left = MIN; Right = MAX;
    while (Left + EPS < Right)
    {
        mid = (Left + Right) / 2;
        midmid = (mid + Right) / 2;
        mid_area = Calc(mid);
        midmid_area = Calc(midmid);
        // 假设求解最大极值.
        if (mid_area >= midmid_area) Right = midmid;
        else Left = mid;
    }
}

现根据几道的OJ题目来分析三分法的具体实现。

buaa 1033 Easy Problem 
http://acm.buaa.edu.cn/oj/problem_show.php?c=0&p=1033

题意为在一条线段上找到一点,与给定的P点距离最小。很明显的凸性函数,用三分法来解决。
Calc函数即为求某点到P点的距离。

ZOJ 3203 Light Bulb
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3203


如图,人左右走动,求影子L的最长长度。
根据图,很容易发现当灯,人的头部和墙角成一条直线时(假设此时人站在A点),此时的长度是影子全在地上的最长长度。当人再向右走时,影子开始投影到墙上,当人贴着墙,影子长度即为人的高度。所以当人从A点走到墙,函数是先递增再递减,为凸性函数,所以我们可以用三分法来求解。

下面只给出Calc函数,其他直接套模版即可。
double Calc(double x)
{
    return (h * D - H * x) / (D - x) + x;
}

heru 5081 Turn the corner 08年哈尔滨regional网络赛
http://acm.hrbeu.edu.cn/index.php?act=problem&id=1280


汽车拐弯问题,给定X, Y, l, d判断是否能够拐弯。首先当X或者Y小于d,那么一定不能。
其次我们发现随着角度θ的增大,最大高度h先增长后减小,即为凸性函数,可以用三分法来求解。

这里的Calc函数需要比较繁琐的推倒公式:
s = l * cos(θ) + w * sin(θ) - x;
h = s * tan(θ) + w * cos(θ);
其中s为汽车最右边的点离拐角的水平距离, h为里拐点最高的距离, θ范围从0到90。

POJ 3301 Texas Trip
http://acm.pku.edu.cn/JudgeOnline/problem?id=3301

题意为给定n(n <= 30)个点,求出饱含这些点的面积最小的正方形。

有两种解法,一种为逼近法,就是每次m分角度,求出最符合的角度,再继续m分,如此进行times次,即可求出较为精确的解。(m 大概取10, times取30即可)

第二种解法即为三分法,首先旋转的角度只要在0到180度即可,超过180度跟前面的相同的。坐标轴旋转后,坐标变换为:
X’ = x * cosa - y * sina;
y’ = y * cosa + x * sina;

至于这题的函数是否是凸性的,为什么是凸性的,我也无法给出准确的证明,希望哪位路过的大牛指点一下~~

例题更新(2010.5.5)
hdu 3400 Line belt
http://acm.hdu.edu.cn/showproblem.php?pid=3400
典型的三分法,先三分第一条线段,找到一个点,然后根据这个点再三分第二条线段即可,想出三分的思路基本就可以过了。

对于求解一些实际问题,当公式难以推导出来时,二分、三分法可以较为精确地求解出一些临界值,且效率也是令人满意的。

/* czyuan原创,转载请注明出处。*/

这篇关于数学-三分-讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062403

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

ispunct函数讲解 <ctype.h>头文件函数

目录 1.头文件函数 2.ispunct函数使用  小心!VS2022不可直接接触,否则..!没有这个必要,方源一把抓住VS2022,顷刻 炼化! 1.头文件函数 以上函数都需要包括头文件<ctype.h> ,其中包括 ispunct 函数 #include<ctype.h> 2.ispunct函数使用 简述: ispunct函数一种判断字符是否为标点符号的函

深度学习速通系列:深度学习算法讲解

深度学习算法是一系列基于人工神经网络的算法,它们通过模拟人脑处理信息的方式来学习和解决复杂问题。这些算法在图像识别、语音识别、自然语言处理、游戏等领域取得了显著的成就。以下是一些流行的深度学习算法及其基本原理: 1. 前馈神经网络(Feedforward Neural Networks, FNN) 原理:FNN 是最基本的神经网络结构,它由输入层、隐藏层和输出层组成。信息从输入层流向隐藏层,最