本文主要是介绍Spark Programming by Java——RDD基本操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在一个内容为{1, 2, 3, 3}的RDD上进行的基本操作
函数名(表现形式为scala) | 目的 | 示例 | 结果 |
---|---|---|---|
collect() | 返回RDD中的所有元素 | rdd.example() | {1, 2, 3, 4} |
count() | RDD中的元素数目 | rdd.count() | 4 |
countByValue() | RDD中每个元素的出现次数 | rdd.countByValue() | {(1,1),(2,1),(3,2)} |
take(num) | 返回RDD中num个数量的元素 | rdd.take(2) | {1,2} |
top(num) | 返回RDD中最大的num个元素 | rdd.top(2) | {3,3} |
takeOrdered(num)(ordering) | 根据你给的排序方法返回一个元素序列 | rdd.takeOrdered(2)(myOrdering) | {3, 3} |
takeSample(withReplacement, num, [speed]) | 随机返回num个元素 | rdd.takeSample(false, 1) | 无值 |
reduce(func) | 在一次遍历中合并RDD中所有的元素(例如,求和) | rdd.reduce((x, y) => x + y) | 9 |
fold(zero)(func) | 和reduce功能一样,但是提供一个初值 | rdd.fold(0)((x, y) => x + y) | 9 |
aggregate(zeroValue)(seqOp, comOp) | 和reduce()函数类似,但是用于返回不同的数据类型 | rdd.aggregate((0, 0)) ((x, y) =>(x._1 + y, x._2 + 1), (x, y) =>(x._1 + y._1, x._2 + y._2)) | (9,4) |
foreach(func) | 将RDD中所有的元素都用于提供的方法 | rdd.foreach(func) | nothing |
Java实现基本代码
import java.util.Arrays;
import java.util.List;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;public class SimpleRDD {public static void main(String[] args) {SparkConf conf = new SparkConf().setMaster("local").setAppName("SimpleRDD");JavaSparkContext sc = new JavaSparkContext(conf);JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3 ,3), 2);System.out.println("rdd collect" + rdd.collect());System.out.println("rdd count" + rdd.count());System.out.println("rdd countByValue" + rdd.countByValue());System.out.println("rdd take" + rdd.take(2));System.out.println("rdd top" + rdd.top(2));System.out.println("rdd takeOrdered" + rdd.takeOrdered(2));System.out.println("rdd reduce" + rdd.reduce((x, y) -> x + y));System.out.println("rdd fold" + rdd.fold(0, (x, y) -> x+y));System.out.println("rdd aggregate test");List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);JavaRDD<Integer> javaRDD = sc.parallelize(data, 2);Integer aggregateValue = javaRDD.aggregate(3, new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer v1, Integer v2) throws Exception { System.out.println("seq~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" + v1 + "," + v2); return Math.max(v1, v2); }}, new Function2<Integer, Integer, Integer>() { int i = 0; @Override public Integer call(Integer v1, Integer v2) throws Exception { System.out.println("comb~~~~~~~~~i~~~~~~~~~~~~~~~~~~~"+i++); System.out.println("comb~~~~~~~~~v1~~~~~~~~~~~~~~~~~~~" + v1); System.out.println("comb~~~~~~~~~v2~~~~~~~~~~~~~~~~~~~" + v2); return v1 + v2; }});System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"+aggregateValue);System.out.println("foreach");rdd.foreach(new VoidFunction<Integer>() {@Overridepublic void call(Integer t) throws Exception {System.out.println(t);}});}
}
这篇关于Spark Programming by Java——RDD基本操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!