考研计组chap2数据的表示和运算(补充)

2024-06-14 21:28

本文主要是介绍考研计组chap2数据的表示和运算(补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、进位计数制

1.r进制

第i位表示r进制的权为i

2.进制转换

(1)r->10

对应位置数*权值

(2)2 -> 16 or 8

每三位2进制数可表示1位16进制

每四位2进制数可表示1位16进制

so 分开之后转为16进制即可

eg:11 1100 0010.01101转8、16

0011 1100   0010.0110 1000 => ( 3 C 2. 6 8)H

 001 111 000 010.011 010 => (1 7 0 2 . 3 2)O

(3)10->2、16、18

way1:

整数部分:除r留余数

小数部分:乘r留整数

eg:123.6875->2进制

整数部分 123

123/2 = 61 ……1 

61/2 = 30……1

30/2 = 15……0

15/2=7……1

7/2 =3……1

3/2=1……1

1/2=0……1

1101111

小数部分0.6875

0.6875*2=1.375

0.375*2=0.75

0.75*2=1.5

0.5*2=1

1011

so -> 110111.1011

way2:凑数

123=64+32+16+8+2+1 = 2^6+2^5+2^4+2^3+2^1+2^0=1111011

0.6875=0.5+0.125+0.0625 = 2^-1+2^-3+2^-4=.1011

so 123.6875 = 1111011.1011 

3.真值和机器数

真值:人类习惯的

机器数:计算机里的样子 2 or 8 or 16进制

无符号数 or 有符号数

ATTn:计算机中数字是以补码形式存在,so运算时使用补码

二、码转制计算(binary)

1.原码

2.反码

符号位不变,数值位01互变

3.补码

反码+1

补码->原码 :way1:-1,数值位01互换

way2:数值位01互换+1

特殊:

x为定点整数,[x]补 = 1,0000000 -> x = -2^7

x为定点小数,[x]补 = 1.0000000 -> x = -1

[x]补->[-x]补 : 全01互换 +1

4.移码

补码符号位01互换,数值位不变

5.符号位+数值位

整体占机器字长n

三、加法替代减法

利用补码,-[x]补 =  +[-x]补

四、0扩展、符号扩展 34

五、C语言强制类型转换 32

1.有符号数 <==> 无符号数

内容不变,直接按照规则看即可

    short x = -4321;//2B=16bit// [-4321]原 = 1001 0000 1110 0001// [-4321]补 = 1110 1111 0001 1111// [y]补 = 1110 1111 0001 1111 =>[y]原->真值61,215unsigned short y = (unsigned short)x;

2.长 ->短

长的部分直接截断

    int a = 165537;//4B=32bit// [a]原 = 0000 0000 0000 0010 1000 0110 1010 0001 -> [a]补
//    -> Ox0002 86a1(直接从IDE内存视图中获取)short b = (short)a;//2B=16bit
//    ->0x86a1 -> -31071printf("b = %d\n",b);

3.短 ->长(符号扩展)

so 数值不变,仅是精度变大

(1)有符号数

符号位和数值位之间补符号数

    short c =-4321;//0xef1f ->0xffff ef1fint m = x;

(2)无符号数

符号位和数值位之间补0

ATTn:顶点整数在计算机中用补码存储

    unsigned short q = 61215;//0xef1f -> 0x0000 ef1funsigned int p=(unsigned short ) q;

六、电路补充知识——门电路

逻辑门

1.与

(1)表达式

Y = A·B = AB   

(2)图形符号(只表示国际画法)(常用)

2.或

(1)表达式

Y = A+ B

(2)图形符号

3.非

(1)表达式

(2)图形符号

4.或非 

先或后非

(1)表达式

(2)图形符号

5.异或 

判断是否有异

(1)表达式

(2)图形符号

6.同或

异或取反

(1)表达式

(2)图形符号

7.门变形画法

多个输入,else不变

8.三种基本逻辑运算的优先级

非  > 与 > 或

(用数学符号理解)

eg:(1) Y = AB + CD 先AB 、CD 后取或 

(2)A(B+C)D 先B+C 再 A 、D

9.常见公式

(1)交换律

A(B+C) = AB+AC

(2)结合律

ABC=A(BC)

A+B+C = A+(B+C)

(3)反演律

七、加法器 (二进制)

此部分只需知道加法器(FA)的构成,标志位的名称和作用

1.一位加法器(FA)

(1)实现

一次只能计算1bit,Ai表示被加数本位,Bi表示加数本位,Ci-1表示来自低位的进位,Si表示本位和,整体利用逻辑运算进行实现

ATTn:只能进行无符号数加减

(2)Si

Si当有奇数个1时本位为1,有偶数个1时本位为0

(3)Ci

至少有两个1时才能进位

(4)图形

2.带标志位的加法器 40

(1)介绍

在FA的基础上加上四个标识器,从而可以进行有符号数加减

(2)标识

1)OF(Overflow Flag) 

表示带符号数是否溢出, OF  = 1溢出;OF = 0不溢出

2)ZF(Zero Flag)

表示结果是否为0 ZF = 1 0;ZF = 0, 不为0

3)SF(Sign Flag)

表示结果为负or 正 SF =  1,为-,SF = 0,为+

4)CF(Carry Flag)

表示无符号数是否溢出, CF  = 1溢出;CF = 0不溢出

(3)图形

1bit计算效率低,so产生两种方式:串行 or 并行 

3.并行加法器(串行)

将多个FA串联

disa:后面需要等待前面运行的结果,效率也低

4.并行进位的并行加法器

(1)介绍

对并行加法器进行优化

根据数学推导,if将前面运行之后的结果一并送到后面,则效率会提高

但是if太多,则线路就会很麻烦,so一般规定4个FA并行

由此产生4位CLA加法器

(2)图形

八、电路知识补充——多路选择器 & 三态门

1.多路选择器

(1)作用

门卫,同时可以守多道门,只允许一个通过

(2)图形

ATTn:m >= log 2 n

2.三态门

(1)作用

门卫,同时只能守一道门,决定是否通过

(2)图形

OP = 1 通过 OP  = 0 不通过

if 通过了,逐位取反之后通过

dis非门:三态门有控制信号

九、算数逻辑单元(ALU) 40

1.概念

ALU是运算器的核心,ALU的核心是(带标志的)加法器

1.功能

算数功能、逻辑功能、else

2.实现原理

加法器,四个标志,与或

3.看懂ALU图示

因为核心是加法器,so图示与加法器相似,多一个操作控制端(ALUop),选择进行什么操作,决定了ALU功能数

4.考点

(1)ifALU支持k种功能 则控制信号位数m>= log2 k up 

(2)ALU的运算数、运算结果位数与计算机的机器字长相同

(3)标志位的特性

(4)标志位信息送入PSW程序状态寄存器(标志寄存器FR)

十、定点数移位运算 41

1.算术移位

当作有符号数,右移补0,左移补符号位

2.逻辑移位

当作无符号位,左右移均补0

3.循环移位

(1)不带进位位

(2)带进位位

十一、定点数加减运算 

1.原码 44

直接使用原码就是对应数位数值相加,可能会导致溢出

eg:1110 1111 

+   0001 0001

= 1 0000 0000  溢出了

2.补码 41

(1)计算

转为补码进行运算

x  - y = x + [-y]补   所有数在计算机中以补码形式存在

x ->-x  全取反 +1 

eg : 15+24 15-24     P41
[x]原 = 0000 1111 = [x]补 [y]原 =  0001 1000 =[y]补
[x+y ]补= 0000 1111
+ 0001 1000
= 0010 0111   =[x+y]原 ->真值 = +39
   [-y]补 = 1110 1000
[x-y]补=  0001 1111
+1110 1000
= 1111 0111   -> [x-y]原 = 1000 1001 ->真值 -9

(2)溢出判断

way1:+++ = -  上溢   -+- =  + 下溢

way2:一位符号位(模2补码)加法器中,if 本位 As、Bs 、结果位 Ss 有异号,则说明溢出

 

V  = 0无溢出;V = 1溢出

way3:双符号位(模4补码),S1S2 == 00 结果为+,无溢出;S1S2 == 01 上溢;S1S2 == 10下溢;S1S2 == 11 结果为-,无溢出

ATTN:只存储一位符号位,运算前复制一位之后进行运算 

way4:符号位和数值位最高位
V = 0 不溢出 V  =1 溢出

有符号数 vs 无符号数

操作相同,way1:手算,看结果是否在正常范围内

way2:机算(溢出了):正数:最高位进1了;负数,最高位进0了

(3)补码加减的运算电路 42

十二、乘法运算 

1.原码

正常小学算法中,0.1101*0.1011(二进制)

          0.1101(被乘数)

        *0.1011(乘数)


              01101

            011010

            000000

        01101000


  = 0.10001111

  看乘数的数位,为1,加被乘数;为0,不加,每次加完被乘数左移再写

(1)加法器中

ACC表示中间结果,起初全为0,MQ中存放乘数,X中存放被乘数。

eg:01101*0.1011

当乘数为1时,(ACC+01101)->(ACC)

每次加完之后ACC逻辑右移,相当于被乘数逻辑左移,so观察5次乘数尾数,右移4次后终止

(2)手算模拟

step1:先取x、y绝对值,因为是乘法,so先把符号位放着,最后确定符号位。

step2:双符号位运算

step3:符号异或(or常识)获得,数值位为ACC除了符号位+MQ中除了符号位

eg:设机器字长5位(符号位1,n = 4),x = -0.1101,y=+0.1011,求xy

step1:|x| = 00.1101 |y|= 00.1011   (原码)

step2:(如图)

step3:负数肯定符号位为1,key = 1.1000 1111

2.补码(Booth算法)

类比补码加法,使用补码进行运算,符号位参与运算,在乘数处运用辅助位(置于末尾),辅助位-数值位最低位(此处只是好记,实际上最低位是辅助位),根据正负对应+[+/-x]补,加完之后ACC算术右移,最后n次加完之后仍需判断进行+[+/-x]补,so一共n次右移,n+1次加减

(1)加法器中

(2)手算模拟

step1:转为补码

step2:符号位-最低位进行加减

step3:n次右移之后判断再+1次

step4:key为ACC+MQ除了原符号位

十三、除法运算

1.原码

小学方法:计算之后被除数-该位商*除数 ,之后补0再运算

由此可知,除法可理解为拼凑,商是找最接近被除数的除数的多少个整数倍,余数是被除数-该位商*除数的数,也就是接下来还需要拼凑的部分

(1)恢复余数法

因为二进制只会商0 or 1,so根据当时拼凑的数与除数的大小进行判断。但因为计算机设置,商默认为1,由此先减去,之后判断是否为+or-,if为-则说名商1不行,则改为0,同时因为拼凑部分-y了,需+回去,so名字为恢复余数法

eg:设机器字长5位(符号位1,n = 4),x = 0.1011,y=0.1101,求x/y

|x| = 0.1011 |y| = 0.1101 [|y|]补=  0、1101 [-|y|]补 = 1.0011

1)加法器中

在加法器中,ACC放置被除数,MQ放置商,X放置除数

2)手算模拟

step1:计算|x| = 0.1011 |y| = 0.1101 [|y|]补=  0.1101 [-|y|]补 = 1.0011

step2:商1,+[-|y|]补,检测是否正确,if拼接-除数 <0,则恢复0 且+[|y|]补

step3:计算完之后MQ、ACC左移(相当于除数右移),再取商,直到MQ位满

step4:最后检测商0是否正确,if不对还得修改

step5:最后结果 商为(MQ),余数为(ACC)*2^(-n),attn小数点的补充

3)逻辑图

(2)不恢复余数法

1)加法器中
2)手算模拟
3)逻辑图

2.补码

十四、数据的存储和排列 61

1.大端存储 vs 小段存储

c short 类型2B = 16bit,->16进制4位,  小端存储 即 倒着,so c = 0xef1f 

3.字 vs 字节 

32bit机器中,1字= 32bit

字节 1Byte = 8bit

4.边界对齐 vs 边界不对齐

一行1字,char(1B)占1/4字,short占半字,每半字为单位

十五、浮点数的表示与运算 55

类似科学计数法

1.浮点数的表示 55

(1)表示

1)阶码

表示次数

2)尾数

具体数值

3)真值

真正的数值

(2)规格化

1)左规

尾数算数左移,阶码-1

2)右规

尾数算数右移,阶码+1

3)原码

数值位最高位为1,具有符号位

正数:0.1xxx……x

负数:1.1xxx……x

4)补码

尾数最高数值位与符号位相反

正数:0.1xxx……x

负数:1.0xxx……x

(3)表示范围(已删除)

2.IEEE 754标准 56

(1)表示

阶码用移码表示,尾数用原码表示

移码 = 真值+偏置值

dist:在进行码之间转换时,规定偏置值为2^(n-1)

在IEEE 754中 规定偏置值为2^(n-1) -1 则float 偏置值为127

(2)data类型(eg float)

考察:float、 double、long double

阶符ms    阶码E    尾数M(隐含1.)  机器字长  

1                  8          23                         32

(3)格式

ms;E;M ->转为16进制

(4)真值 <==>规格数

1)真值 ->IEEE 754 

step:

step1:根据符号定ms

step2:整数部分和小数部分转为2进制,化为类科学计数法

step3:根据次方定E,E用移码表示----E 移码 = 真值 + 偏置值 (way2)

step4:隐藏1定M

step5:补位、组合后化为16进制

eg:十进制-8.25 ->IEEE 754 float   p58

step1:

ms = 1

step2:

8D  = 1000B 0.25D = 0.01B 

8.25D = 1000.01B = (1.00001B)*2^3

step3:

E = [3]移码 = 10000010

way1:[3]移码=10000011 -1 = 1000010 (普通 -1)

way2:3+127=130当作无符号数  = 1000010

step4:M  = 00001

step5:float 1+8+23

ms = 1 E = 10000010 M = 0000100000……0(补0到23位)

so 1;100 0001 0 ; 000 0100 0000 0000 0000 0000 ->   C104 0000H 

2)IEEE 754 ->真值

step:

step1:16进制化为2进制,分成ms、E、M

step2:根据ms定正负,E转为真值,M+1. 

step3:组装 ->化为10进制

eg:IEEE754 C640 0000H ->真值

step1: C640 0000H-> 1100 0001 0000 0100 16个0  B

ms =  1 E = 1000 0010 M =  100 16个0

step2:ms表示负数  E =  13D

M -> 1.1B ->1.5D 

step3: - 1.5* 2^13

(4)特殊值(float)

1)原因

IEEE754的偏置值为127,so -127表示全0,-128表示全1,so用作了特殊用途

2)数值
符号位表正负
i)+0  vs -0 

阶码全0 ,尾数全0

ii)+∞ vs -∞

阶码全1,尾数全0

iii)无规格化正数 vs 无规格化负数

阶码全0,尾数不全为0,表示极小的正负数

iV)NAN

阶码全1,尾数不全为0

3.浮点数的运算 

(1)加减运算 59

steps:
step0:转换成二进制补码(阶码和数码)

step1:齐阶

用阶相减之后的正负表示大小,小->大靠拢

step2:尾数相加(减)

step3:规格化(符号位同号)

step4:舍入(末尾为0则不用舍入)

step5:判断溢出(阶次是否溢出)

step6:转为真值

eg:十进制 X = -5/256,Y = +59/1024,计算X-Y,结果用2进制表示,浮点数格式:阶符数2位,阶码位3位,数符2位,尾数9位

step0:

X =  -5/256 = -101*2^(-101) Y = +59/1024 = 0.111011*2^(-100) 二进制 

X : 11011,11.011000000 Y: 11100,00.111011000

step1:

11011 - 11100 = 11011 + 00100 = 11111 -> -1

X : 11011,11.011000000  -> 11100,11.1011000000 

step3:

X - Y = X+ (-Y ) = 11.01100000+11.000101000 = 10.110001000

step4: 

X - Y : 11100,10.110001000  右移 -> 11101,11.011000100

4.末尾为0,无舍入

5. 无溢出 真值 2^(-3)*(-0.110001)2

 (1+)进行舍入分析

1)就近舍入(0舍1入)

看末尾

2)直接置1

不管末尾为0 or 1,将最后一位置1

(2)类型转换(32bit机器) 60

1)无损

char->int->long->double 

float->double

2)有损

int 表示32位整数(1+31),float表示32位浮点数(1+8+23)

so int 范围 -2^31-1 ~2^31 -1,float 范围2^(-126)~1.1……1*2^(127)

int ->float 31位表示精度,float24位(1隐藏了)表示精度,so会有精度损失

float ->int 直接截断了

这篇关于考研计组chap2数据的表示和运算(补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061549

相关文章

找完工作该补充的东西

首先: 锻炼身体,包括乒乓球,羽毛球,都必须练习,学习,锻炼身体等是一个很重要的与人交际沟通的方式; 打牌,娱乐:会玩是一个人很重要的交际沟通的法宝; 摄影:这个是一个兴趣爱好,也是提高自己的审美,生活品质,当然也是与人沟通的重要途径; 做饭:这个的话就是对自己,对朋友非常有益的一件事情;

【服务器运维】MySQL数据存储至数据盘

查看磁盘及分区 [root@MySQL tmp]# fdisk -lDisk /dev/sda: 21.5 GB, 21474836480 bytes255 heads, 63 sectors/track, 2610 cylindersUnits = cylinders of 16065 * 512 = 8225280 bytesSector size (logical/physical)

SQL Server中,查询数据库中有多少个表,以及数据库其余类型数据统计查询

sqlserver查询数据库中有多少个表 sql server 数表:select count(1) from sysobjects where xtype='U'数视图:select count(1) from sysobjects where xtype='V'数存储过程select count(1) from sysobjects where xtype='P' SE

数据时代的数字企业

1.写在前面 讨论数据治理在数字企业中的影响和必要性,并介绍数据治理的核心内容和实践方法。作者强调了数据质量、数据安全、数据隐私和数据合规等方面是数据治理的核心内容,并介绍了具体的实践措施和案例分析。企业需要重视这些方面以实现数字化转型和业务增长。 数字化转型行业小伙伴可以加入我的星球,初衷成为各位数字化转型参考库,星球内容每周更新 个人工作经验资料全部放在这里,包含数据治理、数据要

如何在Java中处理JSON数据?

如何在Java中处理JSON数据? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨在Java中如何处理JSON数据。JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,在现代应用程序中被广泛使用。Java通过多种库和API提供了处理JSON的能力,我们将深入了解其用法和最佳

两个基因相关性CPTAC蛋白组数据

目录 蛋白数据下载 ①蛋白数据下载 1,TCGA-选择泛癌数据  2,TCGA-TCPA 3,CPTAC(非TCGA) ②蛋白相关性分析 1,数据整理 2,蛋白相关性分析 PCAS在线分析 蛋白数据下载 CPTAC蛋白组学数据库介绍及数据下载分析 – 王进的个人网站 (jingege.wang) ①蛋白数据下载 可以下载泛癌蛋白数据:UCSC Xena (xena

中国341城市生态系统服务价值数据集(2000-2020年)

生态系统服务反映了人类直接或者间接从自然生态系统中获得的各种惠益,对支撑和维持人类生存和福祉起着重要基础作用。目前针对全国城市尺度的生态系统服务价值的长期评估还相对较少。我们在Xie等(2017)的静态生态系统服务当量因子表基础上,选取净初级生产力,降水量,生物迁移阻力,土壤侵蚀度和道路密度五个变量,对生态系统供给服务、调节服务、支持服务和文化服务共4大类和11小类的当量因子进行了时空调整,计算了

【计算机网络篇】数据链路层(12)交换机式以太网___以太网交换机

文章目录 🍔交换式以太网🛸以太网交换机 🍔交换式以太网 仅使用交换机(不使用集线器)的以太网就是交换式以太网 🛸以太网交换机 以太网交换机本质上就是一个多接口的网桥: 交换机的每个接口考研连接计算机,也可以理解集线器或另一个交换机 当交换机的接口与计算机或交换机连接时,可以工作在全双工方式,并能在自身内部同时连通多对接口,使每一对相互通信的计算机都能像

使用Jsoup抓取数据

问题 最近公司的市场部分布了一个问题,到一个网站截取一下医院的数据。刚好我也被安排做。后来,我发现为何不用脚本去抓取呢? 抓取的数据如下: Jsoup的使用实战代码 结构 Created with Raphaël 2.1.0 开始 创建线程池 jsoup读取网页 解析Element 写入sqlite 结束

Excel实用技巧——二级下拉菜单、数据验证

EXCEL系列文章目录   Excel系列文章是本人亲身经历职场之后萌发的想法,为什么Excel覆盖如此之广,几乎每个公司、学校、家庭都在使用,但是它深藏的宝藏功能却很少被人使用,PQ、BI这些功能同样适用于数据分析;并且在一些需要简单及时的数据分析项目前,Excel是完胜python、R、SPSS这些科学专业的软件的。因此决心开启Excel篇章。 数据分析为什么要学Excel Excel图表